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ABSTRACT 
 

EM algorithm is a common algorithm in data mining techniques. With the idea of using two iterations of 

E and M, the algorithm creates a model that can assign class labels to data points. In addition, EM not 

only optimizes the parameters of the model but also can predict device data during the iteration. 

Therefore, the paper focuses on researching and improving the EM algorithm to suit the LiDAR point 
cloud classification. Based on the idea of breaking point cloud and using the scheduling parameter for 

step E to help the algorithm converge faster with a shorter run time. The proposed algorithm is tested 

with measurement data set in Nghe An province, Vietnam for more than 92% accuracy and has faster 

runtime than the original EM algorithm. 
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1. INTRODUCTION 
 

LiDAR (Light Detection and Ranging) is a survey method that measures the distance to a target 

by illuminating the target with the surrounding laser and measuring reflected pulses with a 
sensor. The difference in laser travel time and the laser wavelength can then be used to create 

digital representations of the target. The essence of LiDAR technology is long laser 

measurement technology, GPS / INS spatial positioning, and recognition of light reflection 
intensity [1]. The pulse of the laser is sent to the ground at a certain height. Laser waves are 

reflected from the ground or from object surfaces such as trees, roads or buildings, with each 

pulse measuring the time required to transmit and return signals, calculating the distance from 
the laser source to the object. At each laser pulse generation, the GNSS satellite positioning 

system will determine the spatial position of the emitting point and the inertial navigation 

system will determine the directional angles in the space of the scanning beam. With these 

combined measurements, the position (spatial coordinates) of the points on the ground is 
calculated [2]. From the set of reflection points, we have a point cloud.  
 

In Vietnam, the application of LiDAR technology in many fields is not uncommon for studies 

on data and application of LiDAR technology, which has been included in the development 
policies of many ministries such as Ministry of Construction, Ministry of Information and 

Communications and Ministry of Resources and Environment. However, LiDAR research in 

Vietnam only stopped at the application and use the software with equipment. Through the 
implementation process, the problems that arise are unclassified classification when classified 

employees still have to use more aerial photos to get classification results as at Ministry of 

Resources and Environment. In addition, the copyright issues and ability to update are the 

factors that make LiDAR technology not really popular in our country. So far, studies have been 
published on the application of LiDAR technology, improvements in technology and data 
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processing algorithms that are constantly published by scientists. The research and application 

directions of the authors are relatively broad.  
 

LiDAR data is a relatively large data set and has a wide coverage across the scanning area, so 
sorting as a job is not easy. The point filtering process is a key for almost every application with 

the LiDAR point cloud. With point filtering algorithms, parameter settings and increased 

convergence thresholds increase the accuracy of the point filtering process. Based on that idea, 

the authors group Z.Hui, P.Cheng, Y.Yziggah, Y.Nie proposed the algorithm of non-threshold 
filtering based on the expected maximization algorithm (EM - Expectation Maximization). The 

target splits the point cloud into two groups of ground and non-ground. EM is used to estimate 

the maximum expected for the GMM model parameter (Gaussian Mixture Model). After a 
number of iterations, the points of the point cloud are labelled, and the authors found that the 

proposed algorithm worked well for points belonging to the non-ground group, with only 4.48% 

of errors smaller than 8 algorithms. Point filtering math is reported in ISPRS [5]. In his doctoral 
dissertation, author Artur Maligo proposed a two-class classification model, the first layer was 

built on the GMM model and the second consisted of repeating an intermediate layer to select 

the right grade for original classification purpose. Specifically, the GMM model is identified in 

the unattended classification training class and defines a set of intermediate classes. Test results 
show that the proposed system works well on two data sets with an accuracy of 0.8 - 0.89 [6]. 
 

The creation of 3D models of urban areas is currently of interest to scientists. For a data set with 

a high density point, containing a lot of noise, choosing an appropriate algorithm is absolutely 
necessary. Authors Qing Zhu, Yuan Li, Han Hu, Bo Wu have proposed a point cloud 

classification algorithm based on multi-level semantic relationships. The input of the algorithm 

is a point cloud through transformations based on the uniformity of the point and the binding of 
neighbouring points, which are classified into layers with an accuracy of 93.55%. However, the 

proposed algorithm is still limited with received noise [7]. The authors Suresh Lodha, David P.  
 

Helmbold, Darren M.itzpatrick used the algorithm to maximize expectations in classifying 
LiDAR ground scattering data into four groups: roads, grass, tall buildings and trees. To carry 

out the classification problem, the authors used five characteristics of LiDAR data: altitude, 

elevation change, laser reflectance intensity and intensity image. With 94% accuracy was 

obtained for the 8 square mile area. Based on the selected parameters and models, the EM 
algorithm is appropriate for the classification area [8]. Meanwhile, the team of author Zhenyang 

Hui showed that the EM algorithm fully meets the requirements of the automatic DTM 

extraction problem. With the error of the proposed algorithm is 16.78% lower than the 
traditional PTD algorithm and reduces the system error to 31.95% [9]. The author Nallig Leal 

gave the observed data set and variable values for the GMM model in the first iteration, with 

each label c in the initialization cluster k, group of iteration is done by calculating the 
probability value of each point in each cluster of each iteration j. Then, update the parameters 

for the model and repeat until the convergence [10]. 
 

In the studies mentioned above, the expectation-maximization algorithm is an approach for 

performing maximum likelihood estimation in the presence of latent variables. It does this by 
first estimating the values for the latent variables, then optimizing the model, then repeating 

these two steps until convergence. It is an effective and general approach and is most commonly 

used for density estimation with missing data, such as clustering algorithms like the Gaussian 
Mixture Model. In the EM algorithm, the estimation-step would estimate a value for the process 

latent variable for each data point, and the maximization step would optimize the parameters of 

the probability distributions in an attempt to best capture the density of the data. The process is 
repeated until a good set of latent values and a maximum likelihood is achieved that fits the 

data. 
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- E-step: perform probabilistic assignments of each data point to some class based on the current 

hypothesis h for the distributional class parameters; 
 

- M-step: update the hypothesis h for the distributional class parameters based on the new data 
assignments. 
 

The EM classification algorithm is not based on distance. The algorithm calculates the 

probability for each observation belonging to each class based on the chosen distribution, the 
main purpose of the EM classification algorithm is to find classification solutions to maximize 

the overall probability for classification data with the required number of classes. Therefore, in 

the classification problem with EM, any difference in the range or scope of the variable selected 

for the analysis will not affect the classification results [11]. 
 

However, the EM algorithm is very sensitive to initialization values and is prone to errors with 

local minimum. In addition, the algorithm is difficult to focus, and covariance matrices 

corresponding to one or more components can become an error condition. Wishing to improve 
one of the EM algorithm's disadvantages, the author improved the EM algorithm by dividing the 

point cloud into smaller point clouds vertically, initialization model parameter, use EM to 

conduct point cloud classification (applied to each point cloud part) and assess the degree 
exactly. To improve the algorithm's convergence time, use the scheduling parameter β, where β 

is initialized with a very small value (approximately 0) [12]. 
 

2. PROPOSED METHOD 
 

2.1. Basic EM Algorithm 
 

The EM algorithm is an iterative algorithm to estimate the maximum probability when only a 

subset of data is available. The algorithm was proposed by Dempster, Laird, and Rubin in 1977. 

The algorithm is stated as follows: 
 

 - Suppose for the sample dataset X = (X1, X2, …, Xn), with density conditions, fX|(x|) 

with  = . We have formula: 

                                           l(;X) = logfX|(X|)                                                          (1) 

 
for log-likelihood function [13]. 

 

Steps to implement the algorithm [13]: 
 

- Step 1: An initial prediction is made for model parameters and a delivery probability is 

generated. Sometimes called "E-Step" for the "Expected" distribution 

- Step 2: New data observed based on the model – called E step 
- Step 3: The probability distribution from step E is refined to include new data. This 

step is sometimes called "M-step". 

- Steps 2 to 4 are repeated until a stable distribution is reached. 
 

The EM algorithm has two main steps: E - step and M – step, and described as follows [14]: 

Implementation: 
 

 + E – step: is a step that estimates the distribution of labels for a given model: find 

E(Zij) 

 Assumption  is known and fixed 

 A (B) is the xi event drawn from f1(f2) 
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 D the observed points from xi 

 The expected value of zi is denoted as P (A |D) 

 We have the formula for calculating the expectation D belongs to class A 
 

                                                                                              (2) 
 

With P(D) = P(D|A)P(A) + P(D|B)P(B) 
 

        = f1(xi|1)1 + f2(xi|2)2 repeat for each xi 

 

 + M – step: Find the maximum of log-likelihood function θ 

 Assumption: 1 = 2 = ; 1 = 2 = 0.5 = .  

 

                                     (3) 

E[log ] = E        (4) 
 

 
 

 Using the result found E (Zij) in E - step we have the results: 
 

                                                                                         (5) 
 

The pseudocode of the algorithm was built by the author based on the idea of document [15], 

[17] as follows: 
 

 Input: DL labelled dataset, DU unlabelled dataset, parameter model f() 

 Output: A  DU classified and f() 

 Initial: distribution rule 0, parameter 0, 0(0, 0) 
 

 Procedure: 
   

1. Calculate the maximum response in each observation: 

                                             (6) 

              
  2. Update parameter 0(0, 0) to t(t, t) with : 

                                    (7) 
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  And                            

 End 
 

2.2. Proposed EM 
 

Based on the idea of installing EM algorithm, the proposed method is implemented as the 

following figure 1: 
 

 
Figure 1. Proposed method 

 

We have LiDAR point cloud P = {P1, P2, …, Pn} with each point Pi in point cloud there is a set 

of values (Xi, Yi, Zi) show location (X, Y) and elevation (Z) of point. The value that author use 
to do classification problems is the value of the height Zi of the point (classifying points by 

height). In the point cloud data set with N points, the width of the data D = 3. The 

implementation steps of the method are explained as follows: 
 

a. Step 1: Extraction LiDAR point elevation 
 

From the point set in the point cloud, take the point height value as input for the later 

computation steps, which means we now reduce the width of the data D = 3 → D = 1. 
 

b. Step 2: Initialization model parameter 
 

Suppose there is a data set Z = {Z1, Z2, …, Zn} with Z is the point elevation. We have a 

probability model for the Gaussian distribution shown as follows: 
 

                                                                       (8) 

       

In which, μ - average value of the data set, C - mixing coefficient, σ - standard deviation, β - 

scheduling parameter (reduces the convergence time of the algorithm EM) [14], [16]. 
 

- Initialization μ, β: 
With the value μ after extracting the elevation information of the point in step 1, we will 

calculate μ by taking the average value of the height of all points in the point cloud according to 

the formula (2): 

                                                                        (9) 
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β is initialized with a value of approximately 0. The parameter β can roughly be interpreted as 

the inverse of temperature [16]. At each β value algorithm iterates E step and M step until 

convergence. 
 

- Initialization C, δ 
The mixing coefficient is the probability to determine the proportion of data belonging to the k 

component and must ensure conditions: 

 

                                                                      (10) 
 

Determining the mixing coefficients for k components of GMM model is calculated by the formula: 
 

                                                        (11) 

 

With  is the total number of points in the dataset belongs to the kth component. In 

this study, author initiates a mixing coefficient for all components of the model to be equal. 
There, σ is standard deviation which is calculated by the formula: 
 

                                                            (12) 

With   

 

c. Step 3: Split LiDAR point cloud vertically 
 

With a very large point dataset in the point cloud, updating parameters and converging 
calculations takes a lot of time. Therefore, the graduate student divides the point cloud vertically 

based on the height of the point. However, choosing the number of parts to split to prevent the 

algorithm from falling into a never-ending state requires calculation. 
 

To solve this problem, author took an example on a given point data set (number <3,000), the 

algorithm converges very well. Therefore, it is recommended that the number of points to be 

divided should be less than 10. 
 

d. Step 4: Using EM estimate model parameter  
 

- Increase value β by 1 unit for each loop (value of β is not greater than 1, βmax = 1). If β > 1, 

reset β value = 1.   

 

- At step E of the algorithm calculates the probability that a point Zi belongs to the kth component 

by the formula: 

                                           (13) 

 
With,                                     (14) 

 

 And                                    (15) 

 

And the Gaussian distribution function is calculated according to the formula: 

                                   (16) 

 

- At step M, update the parameters of the model with the values of μ, Σ, Ϲ, σ respectively 
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according to the following formulas: 
 

                                             (17) 

                                                  (18) 

                                                      (19) 

                                                          (20) 

 

- Algorithm convergence: the algorithm converges when the new parameter does not change 

compared to the parameter that exceeds the threshold value ε, with ε calculated by the following 

formula: 

                                               (21) 

 

e. Step 5: LiDAR point cloud classification 
 

Based on the probability of a point belonging to a certain k class in the model, we can proceed to 

classify points. Based on observed data, if P (k | Zi) ≥ 0.5 then conclude that Zi belongs to class k. 
 

f. Step 6: Precision evaluating 

 

To evaluate the accuracy of the algorithm, author uses the following measurements: accuracy, recall 

and F1 measurement of the improved EM algorithm with the basic EM algorithm and the basic EM 

algorithm. 
 

Pseudocode of algorithm can be performance below: 

 

Begin 
 

Input: LiDAR point cloud P = {P1, P2, …, Pn} 

Output: Point cloud classified 
Initialization: the mean - μ, covariance matrix- Σ, mixing coefficient - C, standard 

deviation - σ, scheduling parameter - β 

Procedure: 

  for i = 1 to n 
   for i = 1 to k 

    Increase β up to 1 unit 

 If β < 1 continue E step else set β = 1 

    E – step    

    M- step   
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   if (convergence) stop loop 

   else repeat E and M step 
 

 if P(k|Zi) > = 0.5 Zi belongs to class k 

 else Zi not belongs to class k 
 Precision evaluating 

 End 

 

2.3. Experiment 
 

2.3.1. Experiment Database 
 

Dataset use in paper is LiDAR point cloud data. Point clouds are a powerful and dynamic 

information storage technology. By representing spatial data as a collection of coordinates, they can 

handle large datasets for a wide array of downstream processing. Primarily, in this instance, they are 

used as a middleman to turn the raw data collected by LiDAR processes into 3D models.  

 

With the LiDAR data was investigated in Dien Chau, Nghe An Province. This is an area with 

mountainous terrain that occupies two thirds of the area and hilly slopes inclining from the north to 

the south. Data were collected with the full waveform airborne LiDAR survey. Data was measured 

from the 29st of September, 2016 to the 29h of September, 2016, with an area of 102 km2, 0.25 

pulse/m2, and a density of 4.18 points/m2. The data include 934.843 points, the format of data is 

‘.las’ version 1.2. Each point in the point cloud has the properties shown in Figure 3. However, the 

author uses the coordinates and the height of the point as the input of the classification problem and 

displays the 3D point cloud. In order to easily read and understand data from .las files, the author has 

saved it in .txt format. In .txt file the author only displays the x, y, and z values of the point The 

values of the points are shown in Figure 4. LiDAR point cloud 3D is showed in figure 2. Each point 

in the point cloud is represented by 3 values of x, y and z, where, the value of height z will be 

considered as the input value of the classification problem. 

 

 
 

Figure 2. Attribute of each point 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 12, No 2, April 2020 

9 

 
 

Figure 3. X, Y, Z value of points 

 
2.3.2. Results and Discussion 
 

The proposed method tested with the above data set starts with the extraction of point 

height data. The accuracy of the algorithm will be assessed on accuracy, recall and F1 

measurement.  
 

First step, extract the elevation of the point in the LiDAR point cloud to reduce the dimension of 

data D = 1. The extracted results are shown in Figure 4. 

 

 
 

Figure 4. Extraction of point elevation 

 

Display points in height and divide the point cloud vertically with 9 parts (because the number 

of points is not too large, but the height distribution of points is uneven, there is a large 

elevation difference, so the selection of part numbers need to divide by 9 to avoid uneven height 
distribution between the parts to help the algorithm on each part converge quickly, then the 

point cloud is represented as follows: 
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Figure 5. The following point cloud is divided into 9 parts 

 

The model parameters are initialized on the Z value as follows: 
 

μ = 94.38,  

Σ = 1584.07,  

δ = 39.80,  
β = 10-8, 
 

To determine the number of components of the model, the author used principal component 

analysis to find k. The finished matrix is shown in Figure 5, 6 and 7. Using the EM algorithm to 
recalculate the model's parameters on each part, with 25 iterations, the algorithm converges with 

the parameters changed in figure 8. 

 
 

Figure 6. Correlation between data sets 

 

 
 

Figure 7. principal component analysis of dataset 
 

 
 

Figure 8. Component matrix 
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We can see in the total covariance table that the cumulative value is greater than 50%, so we can 

choose the number of components for the model k = 2. The mixing coefficient is initialized 

equally with 2 components C1 = C2 = 0.5.  
 

 
 

Figure 9. Model parameters are updated through each iteration of steps E and M 

 

Conducting classification with the condition of classification P (k | Zi) ≥ 0.5, conclude that Zi 

score belongs to class k (k = 2). We have a class 1 score of 768.970 points, a class 2 score of 

165.873 points. We have the distribution of points into class 1 and 2 after the classification 
shown in Figure 10 and correlation between frequency of distribution and cumulative 

percentage of data is shown in table 1. 
 

Table. 1. Correlation between frequency of distribution and cumulative percentage of data 

 

Bin Frequency 
Cumulative 

% Bin Frequency 
Cumulative 

% 

1 0 0.00% More 934842 100.00% 

2 0 0.00% 1 0 100.00% 
More 934843 100.00% 2 0 100.00% 

       

 
 

Figure 10. Histogram of point distribution after classification 
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To evaluate the accuracy of the proposed EM algorithm, the author compares the results with 

the results of basic EM. The results are shown in Table 2 with precision, recall and F1 

measurements. The result is shown in table 2. 
 

Table. 1 Compare result proposed EM with basic EM 

 

  Precision Recall F1 Running Time Convergence 

Proposed EM 92.03% 92.06% 0.92045 102.3s 0.0013 

Basic EM 91.80% 91.79% 0.91795 210.25s 0.00021 
 

Through testing and comparing the evaluation of the proposed algorithm with the original EM 

algorithm with improved accuracy and faster running time by using scheduling parameters to 
help the algorithm converge better. However, due to the condition if β > 1 consider the 

condition for β = 1, the condition for the convergence algorithm is not as good as the original 

EM algorithm. With the proposed EM algorithm classification results, it meets the requirements 
of LiDAR point cloud classification, but more research is needed to make the algorithm's 

convergence conditions better and improved the accuracy. 
 

3. CONCLUSIONS 
 

EM algorithm is a popular algorithm in data mining and is used in many different problems. 
With the LiDAR point classification cloud problem, with the idea of classification based on a 

one-point posterior probability belonging to the classification class, EM algorithm proposed 

classification with more than 92% accuracy to meet the requirements of establishment. With the 

proposed EM algorithm based on the initialization parameter initialized with very small price 
and vertical point cloud subdivision to help the algorithm converge faster, while reducing the 

running time of the algorithm compared to Original EM algorithm. However, the algorithm 

needs further development when only classifying the cloud into 2 classes: first pulse and last 
pulse. While the number of unlabelled points is very large, this is a useful amount of 

information to study the nature and morphology of the object.  
 

With the data set measured in Nghe An province, Vietnam, the algorithm gives satisfactory 
results and the running time with an acceptable convergence. However, more data sets need to 

be tested to verify the accuracy. 
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