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ABSTRACT 

 

In stereo vision, the epipolar geometry is the intrinsic projective geometry between the two views. The 

essential and fundamental matrices relate corresponding points in stereo images. The essential matrix 

describes the geometry when the used cameras are calibrated, and the fundamental matrix expresses the 

geometry when the cameras are uncalibrated. Since the nineties, researchers devoted a lot of effort to 

estimate the fundamental matrix. Although it is a landmark of computer vision, in the current work, three 

derivations of the essential and fundamental matrices have been revised. The Longuet-Higgins' derivation 

of the essential matrix where he draws a mapping between the position vectors of a 3D point; however, the 

one-to-one feature of that mapping is lost when he changed it to a relation between the image points. In the 

two other derivations, we demonstrate that the authors established a mapping between the image points 

through the misuse of mathematics. 
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1. INTRODUCTION 
 

 
 

In computer stereo vision, the reconstruction of 3D object shape from two 2d images can be 

defined as follows:  

 

The object to be reconstructed is a set of 3D points 𝑀, it is depicted by two cameras from two 

different standpoints.  Left and right coordinate systems are defined in each of these standpoints. 

And every 3D point is projected on the left and right images as a pair of 2D points 𝑚𝑙 and 𝑚𝑟, 

respectively. They are called corresponding points.  
 

The epipolar geometry is the intrinsic projective geometry between the two views. It is 

independent of scene structure, and only depends on the cameras' internal parameters and relative 

pose. The fundamental matrix 𝐹 encapsulates this intrinsic geometry [1]. 

 

A 3D point 𝑀 is represented in the left and right coordinate systems by two position vectors 

𝑀𝑙 = [𝑋𝑙 𝑌𝑙 𝑍𝑙]𝑇  and𝑀𝑟 = [𝑋𝑟 𝑌𝑟 𝑍𝑟]𝑇 . And𝑚𝑙 = [𝑥𝑙 𝑦𝑙]𝑇  and𝑚𝑟 = [𝑥𝑟 𝑦𝑟]𝑇  are the 

position vectors of the projective points 𝑚𝑙  and 𝑚𝑟  in the left and right coordinate systems, 

respectively, as depicted in Figure 1.  
 

3D shape reconstruction is performed in the following three steps [1] 

 
1. Compute the fundamental matrix from point correspondences. 

2. Compute the camera matrices from the fundamental matrix. 

http://airccse.org/journal/ijcsit2022_curr.html
https://doi.org/10.5121/ijcsit.2022.14102
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3. For each point correspondence 𝑚𝑙 ⟷ 𝑚𝑟, compute the point in space that projects to 
these two image points.  

 

Thus, the first step is to compute the fundamental matrix. The eight-point algorithm is the most 

used method to do so. In practice the number of image points is large; so, the fundamental matrix 
can only be estimated rather calculated. Researchers keep developing methods that overcome 

previously devised ones in terms of accuracy and mitigating noise effects. Only few researchers 

thought that the bad performance of the eight-point algorithm would requires the revision of the 
projective geometry approach itself.   

 

 
 

Figure 1. The epipolar geometry. A point 𝑚𝑙 in one image is transferred via the plane π to a matching point 

𝑚𝑟 in the second image. The epipolar line 𝑙𝑟 through 𝑚𝑟 is obtained by joining 𝑚𝑟 to the epipole 𝑒𝑟.  

 

This article elaborates on the work of [2], where the author showed that the equation of the 
essential and fundamental matrix is a linear equation in two variables. Thus, it has an infinite 

number of solutions. Which means that any image points can have an infinite number of 

corresponding points. On top of that, the author discloses mathematical flaws of two well known 
derivations of the essential and fundamental matrix equations. Thus, clarify the reason behind the 

bad performance of the projective geometry application to 3D reconstruction from 2D views.  

 

The rest of the paper is organized as follows: Section 2 introduces the motivation of addressing a 
classic problem like the fundamental matrix of stereo vision. Sections 3 exposes some related 

work. Section 4 demonstrates the shortcoming of the essential matrix equation. Section 5 shows 

the mathematical flaws of two derivations of the fundamental matrix.  Finally, the paper 
concludes in section 6.  

 

2. WHY SHOULD WE ADDRESS SUCH A CLASSIC PROBLEM?  
 

The epipolar geometry application in computer stereo vision represented by the fundamental 
matrix is still part of computer vision courses in most universities around the world. On top of 

that, researchers are still spending time to develop methods to estimating the fundamental matrix 

[3, 4, 5, 6, 7]. Table 1 shows a sample of outstanding universities with links to their computer 

vision courses that include at least a chapter on epipolar geometry and the fundamental matrix. 

 
Table 1 Sample universities teaching the epipolar geometry to reconstruct 3D shape from two views. 

 

University  Course Title  Course Link 

Stanford 

University, USA 

Computer Vision, From 
3D Reconstruction to 

Recognition 

web.stanford.edu/class/cs231a/syllabus.html 

The University of Computer Vision courses.cs.washington.edu/courses/cse455/ 

𝑚𝑙 𝑚𝑟 

𝑒𝑙  

𝑒𝑟 

M 

𝑙𝑟 

Hπ 

π 

𝑀𝑙 𝑀𝑟 

𝐶𝑙 
𝐶𝑟 

http://web.stanford.edu/class/cs231a/syllabus.html
https://courses.cs.washington.edu/courses/cse455/
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Washington, USA 

MIT, USA 
Computer Vision and 

Applications 

www.ai.mit.edu/courses/6.891/lectnotes/lect
8/lect8-slides.pdf 

University 

College London, 
UK 

Machine Vision 

www.ucl.ac.uk/module-

catalogue/modules/machine-
vision/COMP0137 

University of 
Toronto, Canada 

Foundations of 
Computational Vision 

www.cs.toronto.edu/~kyros/courses/2503 

Tokyo Institute of 

Technology, Japan 
Computer Vision 

www.ocw.titech.ac.jp/index.php?module=Ge

neral&action=T0300&JWC=201804591&la

ng=EN&vid=03 

Sorbonne 

Université - 
Télécom Paris 

Master Informatique - 

Parcours IMA 

https//perso.telecom-

paristech.fr/bloch/P6Image/VISION.html 

3. RELATED WORK  
 

Though the fundamental matrix theory is considered a landmark achievement in computer vision, 
certain researchers called it into question.  

 

In [8], Zisserman, et al. showed that it is not possible to recover the epipolar geometry for several 

configurations. Three years later after introducing the essential matrix, Longuet-Higgins 
discovered configurations that defeat the eight-point algorithm [9]. The work of Hartley [10] is an 

attempt to present excuses for the bad performance of the eight-point algorithm. In [11], Luong,et 

al. discovered that the general methods to compute the fundamental matrix are unstable when the 
points lie near planes. Most of these reviews attribute the failure of the fundamental matrix theory 

to the performance of the eight-point algorithm.  

 
Marill [12] went too far and gave an example that, as he claimed, should cause scientists to 

consider recovering the three-dimensional scene as a theory that is subject to empirical 

verification or falsification. He further argued that if it held up under further examination, the 

example would be evidence that the projective geometry to recover 3D shapes is false. In his 
unpublished work [13], Horn regarded the use of projective geometry as harmful and less 

accurate compared to perspective geometry. In [14], Basta considered the fundamental matrix 

equation 𝑚𝑟
𝑇𝐹𝑚𝑙 = 0 as an invalid mathematical expression. He stressed the fact that 𝐹 is a 3 ×

3 matrix of rank 2 and in ℝ3 the rank of rotation transformation matrix is 3. We elaborate further 
on this reasoning in section 5.3. below. In [15], Basta argued that the derivation based on a line 

passing through two points is flawed because of mixing up operations in Cartesian space and 

homogeneous space. The author of [16] argued that 3D scenes typically include prominent parts 
that make some 3D points visible to one camera and invisible to then other. A fact that 

contradicts the existence of Homography between the two images of a scene as claimed in the 

geometrical derivation of the fundamental matrix of [1], we also elaborate on this in section 5.5.  
 

In [17, 18], the author uses the estimation methods of the fundamental matrix of [19] to show that 

the eight-point algorithm performs poorly when the scene is composed of parts with different 

depths. In [20], Basta presented a mathematical analysis of the fundamental matrix equation 

based on the facts that the matrix 𝐹 depends only on the rotation and translation of the second 

camera with respect to the first one (𝐹 ≜ [𝑡]×𝑅 ), to assert that it is a matrix with constant 

coefficients. The vectors 𝑚𝑙 and 𝑚𝑟 are not orthogonal for every 3D point 𝑀. And because the 

dot product 𝑚𝑟
𝑇 ∙ 𝐹𝑚𝑙  is equal to zero if and only if the two vectors 𝑚𝑟 and 𝐹𝑚𝑙 are orthogonal, 

the equation 𝑚𝑟
𝑇𝐹𝑚𝑙 = 0 is not always true.  

http://www.ai.mit.edu/courses/6.891/lectnotes/lect8/lect8-slides.pdf
http://www.ai.mit.edu/courses/6.891/lectnotes/lect8/lect8-slides.pdf
http://www.ucl.ac.uk/module-catalogue/modules/machine-vision/COMP0137
http://www.ucl.ac.uk/module-catalogue/modules/machine-vision/COMP0137
http://www.ucl.ac.uk/module-catalogue/modules/machine-vision/COMP0137
http://www.cs.toronto.edu/~kyros/courses/2503
http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201804591&lang=EN&vid=03
http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201804591&lang=EN&vid=03
http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201804591&lang=EN&vid=03
https://perso.telecom-paristech.fr/bloch/P6Image/VISION.html
https://perso.telecom-paristech.fr/bloch/P6Image/VISION.html
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In [18] and [21], the author presented extensive experimental results of two real images of a 
building captured from two standpoints. The building (Figure 2) is composed of two parts with 

different depths with respect to the camera lens. In [18], the author used a MATLAB Toolbox 

[19] that contains several  methods for estimating the fundamental matrix using the eight-point 

algorithm. In [21], he implemented the solution in Python and used the findFundamentalMat() 
function of the cvonline package to estimate the fundamental matrix.  

 

 
 

Figure 2. The building image used to estimate the fundamental matrix in [18] and [21]. 

 

In both works [18] and [21], the author estimated the fundamental matrix that satisfies the 

equation 𝑚𝑟
𝑇𝐹𝑚𝑙 = 0. Then, he calculated the values of the expression 𝑚𝑟

𝑇𝐹𝑚𝑙 for several pairs 

of corresponding points (𝑚𝑙 , 𝑚𝑟). Such values are supposed to be equal to zero. The matrix 𝐹 is 

calculated from different regions of the images (whole images, back part of the images, and front 

side of the images) and the pairs of corresponding points are selected arbitrarily from the images. 

Table 2 shows that the values of 𝑚𝑟
𝑇𝐹𝑚𝑙 are sometimes very far away from 0: greater than 10 for 

some cases.  

 

Table 2 the values of the expression 𝑚𝑟
𝑇𝐹𝑚𝑙  calculated for selected points from the whole 

images, the back side, and the front side of the images. As it is apparent the image is composed of 

components with different depth with respect to the camera lens. This result is published in [21]. 

 

F matrix calculated from 

Whole Back  Front  

 0.322  0.121 -0.504 

 0.084  1.496  0.557 

-0.026  0.545  0.684 

 0.234  3.978  0.748 

 0.328  7.314 -0.726 

 0.135  16.158 -0.508 

-0.165  9.001 -0.784 

 0.184  13.800  2.989 

 0.070  12.401 -0.109 

 0.135  10.794 -1.970 
 

In the current work, three main publications where the essential and fundamental matrices are 

derived as a product of a skew matrix and a rotation transformation matrix are scrutinized. One of 
these is where the first time the essential matrix introduced to the computer vision community by 

Longuet-Higgins [22]. Next section shows how Longuet-Higgins succeeded in securing a one-to-

one mapping between the position vectors of world points of a scene and that mapping is lost 
when he transformed it to a relation between the image points. In the other two derivations, the 
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authors try to directly establish a one-to-one relation between the image points. Such a relation is 
represented by the fundamental matrix. The current work shows the mathematical flaws in these 

two derivations.  

 

4. LONGUET-HIGGINS’ DERIVATION OF THE ESSENTIAL MATRIX   
 

4.1. The Equation Derivation  
 

In [22], Longuet-Higgins created a matrix 𝑄 = 𝑅𝑆 where 𝑆 = [
0 𝑡3 −𝑡2

−𝑡3 0 𝑡1

𝑡2 −𝑡1 0
]. The matrix 𝑅 

and the vector 𝑡 are the rotation and translation of the right coordinate system with respect to the 

left coordinate system. 𝑀𝑙 and 𝑀𝑟   are the position vectors of a world point 𝑀 on the left and 

right coordinate systems, respectively. The author formed the expression 𝑀𝑟
𝑇  𝑄𝑀𝑙 and after some 

arithmetic manipulations he found out that  

 

𝑀𝑟
𝑇𝑄𝑀𝑙  = 0      (1) 

 

For every 3D point there are exactly two position vectors; one represents that point in the left 

coordinate system and the other represents the point in the right coordinate system. Thus, 𝑄 in (1) 

is a one-to-one mapping between 𝑀𝑙 and 𝑀𝑟 .  

 

In terms of coordinates, 𝑀𝑙 = (𝑋𝑙 , 𝑌𝑙 , 𝑍𝑙)  and 𝑀𝑟 = (𝑋𝑟, 𝑌𝑟 , 𝑍𝑟) . And the coordinates of the 

projective points  𝑚𝑙 and 𝑚𝑟 of the point 𝑀 in the left and right coordinate systems, respectively 
are  

 
𝑚𝑙 = (𝑋𝑙 𝑍𝑙⁄ , 𝑌𝑙 𝑍𝑙⁄ , 1)

𝑚𝑟 = (𝑋𝑟 𝑍𝑟⁄ , 𝑌𝑟 𝑍𝑟⁄ , 1)
     (2) 

 

Finally, the author divided the left-hand side of (1) by 𝑍𝑙𝑍𝑟  to conclude the essential matrix 

equation  
 

𝑚𝑟
𝑇𝐸𝑚𝑙 = 0      (3) 

 

4.2. Shortcoming of Longuet-Higgins’s derivation  
 

Longuet-Higgins approached the problem from an algebraic perspective, he used matrix product 

as the main operation to derive the essential matrix equation. He formed the expression 𝑀𝑟
𝑇  𝑄𝑀𝑙. 

And because the matrix product is an associative operation, the expression 𝑀𝑟
𝑇  𝑄𝑀𝑙 is the product 

of 1×3 row matrix and a 3×3 matrix and a 3×1 column matrix which led to equation (1). 

 
The problem of Longuet-Higgins’ derivation started when he divided equation (1) by Z𝑙Z𝑟. As it 

is known, the position vector of a point is the unique vector from the origin of the coordinate 

system to the point itself. So, for every point 𝑀, equation (1) holds for exactly two position 

vectors 𝑀𝑙  and 𝑀𝑟  in the left and right coordinate systems, respectively. Dividing (1) by Z𝑙Z𝑟 

results in the following equation 

 
𝑀𝑟

𝑇

𝑍𝑟
 ∙ 𝑄 ∙

𝑀𝑙

𝑍𝑙
 = 0      (4) 
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Where 𝑚𝑙 =
𝑀𝑙

𝑍𝑙
 and 𝑚𝑟 =

𝑀𝑟
𝑇

𝑍𝑟
 are the projection of the vectors M𝑙 and M𝑟  on the left and right 

camera planes, respectively.  
 

In projective geometry, 𝑚𝑙 could be the projection of a single world point or multiple world 

points (Figure 3). It is the projection of all world points laying on the ray drawn from the camera 

lens centre to the point 𝑀. 

 
 

Figure 3. The image point 𝑚𝑙 is the projection of two world points 𝑀 and 𝑁. 𝑚𝑙 is a corresponding point to 

two image points 𝑚𝑟 and 𝑛𝑟. 

 

Furthermore, there are world points visible to one camera and invisible to the other. This could be 

because these points are hidden by 3D objects in the scene. This is one of the characteristics of 

3D scenes. So, these world points are projected on the first camera plane and does not have an 

image on the other camera. However, when you plug this image point into 𝑚𝑙 or 𝑚𝑟 and solve 
equation (3), you get a false corresponding point.  

 

Recall the 3D shape reconstruction as described in [1] is accomplished through the following 

steps:  

 

1. Compute the fundamental (essential) matrix from point correspondences. 
2. Compute the camera matrices from the fundamental matrix. 

3. For each point correspondence 𝑚𝑙⟷𝑚𝑟, compute the point in space that projects to these 

two image points.  
 

Assuming the point 𝑝 = (1,2,1) is on the left camera plane (image). And the matrix 𝐸 is already 

calculated or estimated. To compute the corresponding point of 𝑝, we plug the value of 𝑝 into (3).  

 

[𝑥𝑟 𝑦𝑟 1]𝐸[1 2 1]𝑇 = 0, 𝐸 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]    (5) 

 

Substituting for the matrix 𝐸, we get the following equation  
 

[𝑥𝑟 𝑦𝑟 1] [
𝐴1

𝐴2

𝐴3

] = 0 , where[
𝐴1

𝐴2

𝐴3

] = [
𝑎11 + 2𝑎12 + 𝑎13

𝑎21 + 2𝑎22 + 𝑎23

𝑎31 + 2𝑎32 + 𝑎33

]   (6) 

 
which leads to the following equation  

 

𝐴1𝑥𝑟 + 𝐴2𝑦𝑟 + 𝐴3 = 0     (7) 

𝑚𝑙 𝑚𝑟 

M 

𝐶𝑙 
𝐶𝑟 

N 

𝑛𝑟 
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Equation (7) is a linear equation in two variables, it has infinitely many solutions. There are 

infinite values of (𝑥𝑟 , 𝑦𝑟) satisfying equation (7). Geometrically, this means that any point 𝑝 has 

many corresponding points. Which is incorrect; the certainty is each image point has at most one 

corresponding point in each other image except the case of occlusion when two different points 

have the same corresponding point.  
 

Consequently, the essential (fundamental) matrix equation does not ensure the recovery of the 

right shapes of 3D scenes.  
 

4. ESTABLISHING A DIRECT MAPPING BETWEEN THE IMAGE POINTS  
 

Because the above essential matrix derivation suffers from the drawback of an image point can 

have unlimited number of corresponding points, computer vision researchers try to directly draw 
a mapping between the image points without passing through position vectors of the 3D point. 

The next sections explore the flaws of two well-known derivations of the essential and 

fundamental matrices equations.  
 

4.1. Vectors transformation and operations  
 
Is it correct to perform a dot product or cross product of two vectors defined in two different 

coordinate systems? Let us explore the case through the example depicted in Figure 4 below. The 

vectors 𝑢 and 𝑣 are defined in the coordinate system (𝑋, 𝑌, 𝑍), and the vector 𝑤 is defined in the 

coordinate system (𝑋´, 𝑌´, 𝑍´). Let 𝑢 = [3,3,0]𝑇  and 𝑣 = [2,2,3]𝑇  in (𝑋, 𝑌, 𝑍), and 𝑤 = [2,2,3]𝑇 

in (𝑋´, 𝑌´, 𝑍´). 

 

 
 

Figure 4. The coordinate system (X´, Y´, Z´) is obtained by translating (X, Y, Z) to the right and rotating it 

around the Z axis counterclockwise by an angle of 180°. 
 

We have 𝑢. 𝑤 = [3,3,0]. [
2
2
3

], and at the same time, we have 𝑢. 𝑣 = [3,3,0]. [
2
2
3

], and of course 𝑣 ≠

𝑤. A vector is a quantity with both magnitude and direction [23]. The vectors 𝑣 and 𝑤 have the 
same magnitude but their directions are different.  

 

The vector 𝑣 = 2𝑖 + 2𝑗 + 3𝑘   and 𝑤 = 2𝑖′ + 2𝑗′ + 3𝑘′ , where (𝑖, 𝑗, 𝑘) are the unit vectors of 

(𝑋, 𝑌, 𝑍) and (𝑖′, 𝑗′, 𝑘′) are the unit vectors of (𝑋′, 𝑌′, 𝑍′).  
 

The dot product of unit vector by itself is equal to 1, and the dot product of two different unit 

vectors is equal to 0 [24]. 
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𝑢. 𝑣 = 3𝑖 ∗ 2𝑖 + 3𝑗 ∗ 2𝑗 + 0𝑘 ∗ 3𝑘 = 6 + 6 + 0 = 12 
𝑢. 𝑤 = 3𝑖 ∗ 2𝑖′ + 3𝑗 ∗ 2𝑗′ + 0𝑘 ∗ 3𝑘′ =? 

 

Thus, the operation 𝑢. 𝑤 is invalid unless the two vectors 𝑢 and 𝑤 are transformed to the same 

coordinate system.  
 

The cross product of unit vectors of any two of the unit vectors 𝑖, 𝑗, 𝑘 is equal to positive or 

negative of the remaining third unit vector [25].  
 

In the contrary to unit vectors of a given coordinate system, no rules are available to calculate the 

cross product of unit vectors of two different coordinate systems.  

 

4.2. Luong-Faugeras derivation of the essential matrix 
 

In [26], Luong et al. assert that because the vector from the first camera optical centre to the first 

imaged point 𝑚𝑙, the vector from the second optical centre to the second imaged point 𝑚𝑟, and 

the vector from one optical center to the other 𝑡 are all coplanar. In normalized coordinates, this 
constraint can be expressed simply as  

 

𝑚𝑟
𝑇 (𝑡 × 𝑅𝑚𝑙) = 0      (8) 

 

where 𝑅 and 𝑡 capture the rotation and translation of the right cameras coordinate system with 

respect to the left one. In [27], Birchfield explicitly stated that the multiplication by 𝑅  is 

necessary to transform 𝑚𝑙 into the second camera's coordinate system. The authors [26] defined 

[𝑡]× as the matrix such that [𝑡]× 𝑦 = 𝑡 × 𝑦 for any vector 𝑦, and they rewrite equation (8) as a 

linear equation 

 

𝑚𝑟
𝑇 ([𝑡]×𝑅𝑚𝑙  ) = 𝑚𝑟

𝑇𝐸𝑚𝑙 = 0,      (9) 

Where 𝐸 = [𝑡]×𝑅 is called the Essential matrix and [𝑡]× = [
0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0
]. 

 

4.3. The flaw in Luong-Faugeras derivation  
 

Let us examine equation (8), 𝑚𝑟
𝑇 (𝑡 × 𝑅𝑚𝑙) = 0.  

 

We have the following facts. The point 𝑚𝑙  is on the left image, so the position vector 𝑚𝑙  is 

defined in the left coordinate system and not defined in the right one. The point 𝑚𝑟 is on the right 

image, then the vector 𝑚𝑟 is defined in the right coordinate system and not defined in the left 

one. And the vector 𝑡, the translation of the origin of the right coordinate system with respect to 

the left coordinate system; so, 𝑡 is defined in the left coordinate system and not defined in the 
right one.  

 

The left hand-side of (8) consists of three vector operations. The term inside the parenthesis is 
evaluated first which includes a vector product and a matrix product.  

 

Let assume that 𝑅𝑚𝑙 is to be evaluated first; it is the product of a rotation transformation matrix 

and a vector defined in the left coordinate system. So, 𝑣 = 𝑅𝑚𝑙 is the vector 𝑚𝑙 expressed in the 

right coordinate system. Therefore 𝑡 × 𝑅𝑚𝑙 = 𝑡 × 𝑣 is the cross product of 𝑡 defined in the left 

coordinate system and 𝑣  defined in the right coordinate system. Thus, 𝑡 × 𝑅𝑚𝑙  is the cross 

product of two vectors not defined in the same coordinate systems; so, it is invalid.  
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Now, let us consider that the cross-product operation 𝑡 × 𝑅 is to be evaluated first.  
 

DEFINITION  

 

The cross product (or vector product) of two vectors 

 

𝑥 = ⟨𝑥1, 𝑥2, 𝑥3 ⟩  and 𝑦 = ⟨𝑦1, 𝑦2, 𝑦3 ⟩  in ℝ3  is the vector 𝑥 × 𝑦 = ⟨𝑥2𝑦3 − 𝑥3𝑦2 , 𝑥3𝑦1 −
𝑥1𝑦3 , 𝑥1𝑦2 − 𝑥2𝑦1 ⟩.  
 

The cross product of two vectors x and y in ℝ3 is a vector orthogonal to both 𝑥 and 𝑦 [23].  

 

The cross product of a 3D vector and a 3×3 matrix is undefined [23].  

 

Therefore, there is no operation called cross product of a vector and a matrix; therefore, the term 

𝑡 × 𝑅 is undefined. Thus, equation (8) that is the premise of the current derivation of the essential 
matrix is invalid. And the current derivation of the essential matrix is flawed.  

 

Algebraically, researchers consider [𝑡]× = [
0 −𝑡3 𝑡2

𝑡3 0 −𝑡1

−𝑡2 𝑡1 0
] as the matrix such that [𝑡]×𝑦 =

𝑡 × 𝑦 for any vector 𝑦 to conclude 𝐸 = [𝑡]× 𝑅, the Essential matrix.  

 

1. The first flaw here is the term [𝑡]× 𝑦 is defined for a vector 𝑦 and not for a 3 × 3 matrix 

𝑅.  

2. The second, regardless of whether the term 𝐸 = 𝑡 × 𝑅 is undefined. Let us assume that it 

is evaluated first. Substitute for 𝐸 in the expression 𝑚𝑟
𝑇 (𝑡 × 𝑅𝑚𝑙), we obtain𝑚𝑟

𝑇𝐸𝑚𝑙, 

where 𝐸 is 3 × 3 matrix of rank 2. 𝐸 cannot be a transformation matrix in ℝ3. Thus, 𝐸𝑚𝑙 

is a vector in the left coordinate system as is 𝑚𝑙. The vector 𝑚𝑟 is defined in the right 

coordinate system. Therefore, the dot product 𝑚𝑟
𝑇 ∙ 𝐸𝑚𝑙 is an undefined operation.  

 

One could claim that 𝑅𝑚𝑙 is a product of a matrix and a vector defined in the left coordinate 
system, which produces a vector defined in the same coordinate system. Then the cross-

product𝑡 × 𝑅𝑚𝑙 is a vector defined in the left coordinate system as well. In this case, 𝑚𝑟
𝑇 ∙  (𝑡 ×

𝑅𝑚𝑙) is a dot product of two vectors, 𝑚𝑟 from the right coordinate system and 𝑡 × 𝑅𝑚𝑙 from the 

left coordinate system. As demonstrated above, it is an undefined operation again.  
 

4.4. Hartley-Zisserman derivation of the fundamental matrix  
 

In the geometric derivation of the fundamental matrix equation, the authors [1] assert the 

existence of 2D homography 𝐻𝜋 mapping each point 𝑚𝑙 from the left image to a point 𝑚𝑟 on the 

right image, because the set of all such points 𝑚𝑙 in the left image and the corresponding points 

𝑚𝑟 in the right image are projectively equivalent, since they are each projectively equivalent to 

the planar point set 𝑀 (Figure 1). Thus, 𝐹 = [e𝑟]×𝐻𝜋 that is a matrix product of a skew matrix 

and a transformation from left to right.  
 

4.5. The flaw in Hartley-Zisserman derivation 
 

The points 𝑀 in the above statement are the world points of the 3D scene to be reconstructed 

from a pair of its images. If the 3D scene is planar, why are we constructing a planar scene from 

two of its planar images in the first place. Thus, the existence of a homography mapping points of 
the left image to points on the right image is on condition that the 3D scene is planar. And 
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because typical 3D scenes might contain objects with different depths (i.e., distance from the 
camera centre), some points on these objects can be visible to one camera and hidden from the 

other. Therefore, some image points on the left camera plane will not have corresponding points 

on the right camera plane and points on the right image will not have corresponding points on the 

left image. Furthermore, researchers recognize the existence of occlusion problem [28] where 

two 3D points or more are projected onto the same image point on one view as in Figure 3. At the 

same time, they assert the existence of a homography between points of the left image and those 
on the right image. These facts, confirm that points on the left and right images are not 

projectively equivalent and no homography exists between them. In conclusion, the expression 

𝐹 = [e𝑟]×𝐻𝜋 where 𝐻𝜋is a homography is irrational.  

 

5. CONCLUSION  
 

In this work, we demonstrated that the first ever derivation of the essential matrix that has been 

introduced to the computer vision community is free of flaws; however, it does not ensure a one-

to-one mapping between the corresponding points of the two views. Later, researchers tried to 
address such shortcoming through deriving the essential and fundamental matrices equation as a 

direct mapping between the image points. We showed that two of the well-known of these 

derivations are mathematically flawed. The main discovered flaw consists of performing dot and 
cross multiplications on vectors not defined in the same coordinate system.  

 

The current work establishes a rigorous scrutiny of a theory that claims to be mathematically 
founded to conclude that such a theory that is still taught in universities around the world is 

flawed. The trend for solving computer vision problems shifted from mathematically based 

theory to machine learning tools to obtain good solutions. 
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