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ABSTRACT 
 

Some students in the Computer Science and related majors excel very well in programming-related 

assignments, but not equally well in the theoretical assignments (that are not programming-based) and 

vice-versa. We refer to this as the "Theory vs. Programming Disparity (TPD)". In this paper, we propose a 

spectral bipartivity analysis-based approach to quantify the TPD metric for any student in a course based 

on the percentage scores (considered as decimal values in the range of 0 to 1) of the student in the course 

assignments (that involves both theoretical and programming-based assignments). We also propose a 

principal component analysis (PCA)-based approach to quantify the TPD metric for the entire class based 

on the percentage scores (in a scale of 0 to 100) of the students in the theoretical and programming 

assignments. The spectral analysis approach partitions the set of theoretical and programming 

assignments to two disjoint sets whose constituents are closer to each other within each set and relatively 

more different from each across the two sets. The TPD metric for a student is computed on the basis of the 

Euclidean distance between the tuples representing the actual numbers of theoretical and programming 

assignments vis-a-vis the number of theoretical and programming assignments in each of the two disjoint 

sets. The PCA-based analysis identifies the dominating principal components within the sets of theoretical 

and programming assignments and computes the TPD metric for the entire class as a weighted average of 

the correlation coefficients between the dominating principal components representing these two sets. 
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1. INTRODUCTION 
 

Spectral analysis of a complex network has been observed to reveal significant structural details 

that would have been hitherto unknown in the scientific community [1]. Spectral analysis of a 

network graph typically involves the computation of the Eigenvectors and their corresponding 

Eigenvalues using one of the symmetric matrices such as the adjacency matrix, Laplacian matrix 

[7] and etc that reflect the topology of the network [2]. The indexes of the entries in an 

Eigenvector correspond to the sorted order (increasing order) of the node ids. Spectral analysis of 

an nxn matrix results in 'n' Eigenvalues and the corresponding 'n' Eigenvectors (one Eigenvector 

per Eigenvalue). Any two Eigenvectors are orthogonal to each other (i.e., the dot product of any 

two Eigenvectors is zero). The largest Eigenvalue is called the "Principal Eigenvalue" and the 

Eigenvector corresponding to the principal Eigenvalue is called the "Principal Eigenvector" [3]. 

If all the entries in the underlying matrix used for spectral analysis are positive (≥ 0), then the 

principal Eigenvalue is guaranteed to be positive and all the entries in the principal Eigenvector 

are also positive. Hence, when computed based on matrices with positive entries, in order to still 
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satisfy the mutually orthogonal property, (unless all the entries in an Eigenvector are zero) at 

least one non-zero entry in every Eigenvector other than the Principal Eigenvector is guaranteed 

to be negative so that the dot product of any two Eigenvectors evaluates to zero. 

 

In a classical work [4], Estrada et al proposed that the extent of bipartivity (in the form of a 

bipartivity index) among the vertices in a network could be quantified using the Eigenvalues of 

the adjacency matrix of the network graph. A graph is said to be bipartite if the vertices of the 

graph could be grouped into two disjoint sets such that the end vertices of any edge are in the two 

different partitions and not in the same partition. Estrada et al observed that if the underlying 

graph is bipartite, the vertices with positive and negative entries in the Eigenvector (hereafter 

referred to as the 'bipartite Eigenvector') corresponding to the smallest Eigenvalue represent the 

two disjoint partitions of vertices in the graph. Estrada et al also observed that if the underlying 

graph is not bipartite, the vertices with positive and negative entries in the bipartite Eigenvector 

could still be construed to form the two disjoint partitions of the vertices of the graph such that 

there are exist a minimal number of edges (referred to as the 'frustrated edges') between vertices 

in the same partition and a majority of the edges are between vertices across the two partitions.   

 

In the first half of the paper, we conduct spectral bipartivity analysis of the scores earned by a 

student in theoretical and programming assignments of a Computer Science course and seek to 

quantify the extent of disparity in the scores earned by the student in the theoretical assignments 

vs. programming assignments. Some students in the Computer Science and related majors excel 

very well in programming-related assignments, but not equally well in the theoretical 

assignments (that are not programming-based) and vice-versa. We refer to this as the "Theory vs. 

Programming Disparity (TPD)". Our methodology is briefly described here (more details are in 

Section 2): The student score in each assignment is considered in a decimal percentage scale of 0 

to 1 (i.e., each assignment is evaluated for 100% and the decimal percentage score for a student 

in the assignment is the percentage score divided by 100: for example, if an assignment score is 

81%, the decimal percentage score is 81/100 = 0.81). We first determine the Difference Matrix 

(DM) of the student scores in the assignments wherein an entry DMuv is the absolute difference in 

the decimal percentage scores of the two assignments u and v. We then determine the bipartite 

Eigenvector of the DM by subjecting it to spectral analysis. We identify the index entries with 

positive signs and negative signs, and the corresponding assignment IDs are grouped into two 

separate (disjoint) sets. We observe that any two assignments with similar (closer) values for the 

decimal percentage scores are more likely to be grouped into the same set and two assignments 

with appreciably different decimal percentage scores are more likely to be grouped in separate 

sets. That is any two vertices u and v whose DMuv entry is closer to 0 are more likely to end up in 

the same set of vertices and vertices u and v whose DMuv entry is much greater than 0 are more 

likely to end up in different sets of vertices. Such an observation is consistent with the 

observations made by Estrada et al for bipartivity analysis using an adjacency matrix A (i.e., 

vertices u and v whose Auv entries were 0 are more likely to be in the same partition and vertices u 

and v whose Auv entries were 1 are more likely in different partitions). We quantify the TPD on 

the basis of the Euclidean distance between the actual number of theoretical and programming 

assignments vs. the number of theoretical and programming assignments in the two sets of 

disjoint assignments identified through spectral bipartivity analysis. 

 

In the second half of the paper, we present a principal component analysis (PCA)-based approach 

to quantify the TPD for an entire class. PCA is a dimensionality reduction technique that 

maximally captures the variances across a dataset of m features to n dominating principal 

components such that n << m. The dominating principal components are considered to 

cumulatively capture at least 80% of the variances among the feature values in the dataset. In this 

context, we propose an approach wherein we will first separately identify the dominating 

principal components of the set of theoretical assignments and the set of programming 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 5, October 2022 

3 

assignments for the entire class. We will then determine the pair-wise correlation coefficients 

(Pearson's) between the principal components across these two categories of assignments. If there 

is disparity among the students between the two categories of assignments, we expect these 

Pearson's correlation coefficients to be negative: indicating that students who scored high in the 

theoretical assignments did not score as high in the programming assignments and vice-versa. If 

the correlation coefficients are positive, it indicates the students who scored high (low) in the 

theoretical (programming) assignments scored high (low) in the other category as well. We 

propose to quantify the TPD for an entire class as a weighted average of these Pearson's 

correlation coefficients, with the weights being the product of the variances of the pair-wise 

dominating principal components of the theoretical and programming sets of assignments. 

 

The rest of the paper is organized as follows: In Section 2, we present our proposed spectral 

bipartivity analysis-based methodology to quantify the TPD metric per student using a running 

example. Section 3 evaluates the effectiveness of the proposed TPD per student approach with 

two of the well-known metrics (Bipartivity index: BPI [4] and Hausdorff Distance: HD [5]) that 

exist in the literature to study the effectiveness of partitioning of a data set to two clusters. 

Section 3 also highlights the uniqueness of the proposed TPD per student approach. Section 4 

presents the PCA-based approach proposed to quantify the TPD metric for an entire class. 

Section 5 reviews related work and Section 6 concludes the paper. Throughout the paper, the 

terms 'set' and 'partition', 'network' and 'graph', 'edge' and 'link' are used interchangeably. They 

mean the same. 

 

2. SPECTRAL BIPARTIVITY ANALYSIS-BASED APPROACH TO QUANTIFY 

THEORY VS. PROGRAMMING DISPARITY PER STUDENT 
 

Let P and T be respectively the set of scores (represented in decimal percentage format) earned 

by a student in programming and theoretical assignments. The indexes for the assignments in the 

set P range from 0 to |P| - 1, where |P| is the cardinality of the set P (i.e., the number of 

programming assignments). The indexes for the assignments in the set T range from |P| to |P| + 

|T| - 1, where |T| is the cardinality of the set T (i.e., the number of theoretical assignments). Let S 

be the union of the two sets P and T. That is, the set S comprises of the scores earned by the 

student in the programming assignments, followed by the theoretical assignments. The indexes 

for the assignments in S are the same as their indexes in the sets P or T, whichever they come 

from. Let DM be a symmetric/square matrix whose dimensions correspond to the cardinality of 

the set S. An entry DMij for row index i and column index j represents the absolute difference in 

the decimal percentage scores for the i
th 

and j
th
 element/assignment in the set S. Figure 1 presents 

the sets P, T and S (of size 8, 4 and 12 respectively) as well as the DM matrix (of dimensions 12 x 

12) for a sample data set that is used as a running example to explain the proposed methodology 

in this section. The indexes for the assignments in the sets P and T range from 0...7 and 8...11 

respectively; the indexes of these assignments are retained in the set S that is the amalgamation of 

the assignments in the sets P and T (in the same order). Likewise, the indexes in DM correspond 

to the indexes in the set S. 

 

Figure 2 presents the 12 Eigenvalues and the entries of the Bipartite Eigenvector, which is the 

Eigenvector corresponding to the smallest Eigenvalue of -2.2285, of the Difference Matrix (DM). 

The indexes (colored in blue) whose entries are positive (≥ 0) are grouped to partition (set) X and 

the indexes (colored in red) whose entries are negative (< 0) are grouped to partition (set) Y. 

These are the two disjoint partitions of the assignments in the set S predicted based on spectral 

bipartivity analysis. In Figure 2, we also display the submatrices of the Difference Matrix that 

show the difference in the decimal percentage scores for any two assignments within the sets X 

and Y as well as between the two sets X and Y. We notice the entries in the submatrices 
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corresponding to the differences in the assignment scores within the sets X or Y are relatively 

much smaller (closer to 0) compared to the entries in the submatrix corresponding to the 

differences in the assignment scores between an assignment in set X and an assignment in set Y. 

 

 
 

Figure 1. Sample Data set to Illustrate the Spectral Bipartivity-based Analysis  

for Theory vs. Programming Disparity 

 

 
 

Figure 2. Bipartite Eigenvector for the Difference Matrix of Figure 1 as well as the Submatrices 

Representing the Difference Values between Assignments within the two Partitions and across the Two 

Partitions 

 

We now seek to quantify the extent to which the grouping of the assignments in sets X and Y are 

closer to the grouping of the programming and theoretical assignments in the sets T and P. In 

order for our hypothesis (that there exists a disparity in the scores earned by the students in the 

programming vs. theoretical assignments) to be true, we would like the two sets X and Y to be the 
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same as the two sets T and P (or P and T); that is, we would prefer the set X to be all theoretical 

assignments and the set Y to be all programming assignments or the set X to be all programming 

assignments and the set Y to be all theoretical assignments. In this pursuit, we first determine the 

number of theoretical assignments and the number of programming assignments in each of the 

sets X and Y and let these be indicated using symbols |XT|, |XP|, |YT| and |YP|. We then determine 

the Euclidean distance between the tuples (|XT|, |YP|) and (|T|, |P|) as well as between the tuples 

(|YT|, |XP|) and (|T|, |P|) and refer to the minimum of these two Euclidean distances as the Theory 

vs. Programming Tuple Proximity (TPTP) distance for the given data set.  

 

The maximum value for the TPTP distance is 
22 |||| PT  and we will incur it when all the 

four values |XT|, |XP|, |YT| and |YP| are zero each (i.e., the assignment IDs in the partitions X and Y 

identified through spectral bipartivity analysis have no overlap with the assignment IDs in the 

partitions P and T). Such a scenario occurs when there is minimal or no disparity among the 

scores in the programming vs. theoretical assignments and the distribution of the assignment IDs 

in the partitions X and Y are random. On the other hand, if there is maximum disparity, the 

assignment IDs in partitions X and Y will overlap with those of P and T, and either |XP| |P| and 

|YT| |T| or |YP| |P| and |XT| |T|. This would make the TPTP distance much smaller than the 

maximum value of 22 |||| PT  . Considering the above interpretation of the TPTP distance, we 

formulate the TPD (Theory vs. Programming Disparity) metric as follows:  

 

22 ||||
1

PT

TPTP
TPD


  

 

If there is maximum disparity, then the TPTP distance will be either closer to 0 or the ratio TPTP 

/ 22 |||| PT  be closer to 0, making the TPD metric score to be closer to 1. On the other hand, if 

there is no disparity, the TPTP distance will be closer to the maximum value of 22 |||| PT  and 

as a result the ratio TPTP / 22 |||| PT  be closer to 1, making the TPD metric score to be closer 

to 0.  

 

Figure 3 presents the computation of the |XT|, |XP|, |YT| and |YP| numbers for the running example 

of Figures 1-2 and the computation of the TPD metric for the sample data set. The TPD metric 

value for this data set is 0.75, indicating that there is an appreciable disparity in the theoretical vs. 

programming scores in this data set. Such a conclusion could also be justified by visually looking 

at the proximity of the tuple (|YT| = 3, |XP| = 6) corresponding to the TPTP distance to the tuple 

(|T| = 4, |P| = 8) in Figure 3 as well as the raw data set values {0.79, 0.72, 0.61, 0.15} and {1.00, 

0.94, 0.90, 1.00, 1.00, 0.60, 1.00, 0.49} for the sets T and P respectively. 

 

 
 

Figure 3. Computation of the TPD Metric for the Sample Data Set of Figure 1 
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3. EVALUATION OF THE SPECTRAL BIPARTIVITY ANALYSIS APPROACH 
 

In this section, we apply the proposed spectral bipartivity analysis-based approach to quantify the 

theory vs. programming disparity per student in the CSC 228 Data Structures and Algorithms 

course taught in Spring 2020 at Jackson State University, MS, USA. In addition to the TPD 

metric, we consider two other metrics that appear to be potentially applicable to quantify the 

extent of disparity in a data set with respect to two different categories (in this case, theoretical 

vs. programming assignments). These are:  

 

(i) Bipartivity Index (BPI): The BPI was originally proposed by Estrada et al [4] to quantify the 

extent of bipartivity between the two partitions of vertices identified using the Eigenvector 

(referred to as the Bipartite Eigenvector) corresponding to the smallest Eigenvalue. The input 

matrix for Estrada et al's spectral bipartivity analysis is a 0-1 adjacency matrix. If the underlying 

graph is not bipartite, the two partitions of vertices identified using the Bipartite Eigenvector have 

as few edges as possible between vertices within the same partition and a majority of the edges 

are between vertices across the two partitions. If the underlying graph is indeed bipartite, the two 

partitions of vertices identified using the Bipartite Eigenvector will have no edges between 

vertices within the same partition and all the edges in the graph will be between vertices across 

the two partitions. The BPI of a graph of 'n' vertices is computed using the following formulation 

based on the 'n' Eigenvalues (λ) of its 0-1 adjacency matrix. If the underlying graph is bipartite, 

the sum of the sinh values of the 'n' Eigenvalues will be zero and the BPI of the graph will be 1.0. 

If the underlying graph is not bipartite, then the sum of the sinh values of the 'n' Eigenvalues will 

be greater than 0, and the BPI will be less than 1.0. 
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In this section, we will explore how well the Eigenvalues of the Difference Matrix (DM) of an 

assignment score data set capture the Theory vs. Programming Disparity such that the BPI values 

are closer to 1.0 for data sets with larger values for the TPD metric and vice-versa. Figure 4 

displays the 12 Eigenvalues of the running example assignment scores data set of Section 2: the 

sums of the cosh and sinh functions of the Eigenvalues are 33.4068 and 12.2509 respectively, 

leading to a BPI of 33.4068 / (33.4068 + 12.2509) = 0.73.  

 

 
 

Figure 4. Computation of the Bipartivity Index (BPI) and Hausdorff Distance (HD) Metric Values for the 

Sample Data Set of Figure 1 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 5, October 2022 

7 

(ii) Hausdorff Distance: The Hausdorff Distance (HD) metric [5] has been traditionally used to 

quantify how far are two data sets in a particular metric space. In the context of quantifying the 

Theoretical vs. Programming Disparity, we propose to compute the Hausdorff Distance (see 

below for the formulation) between the decimal percentage scores (referred to as data points) in 

the sets of theoretical assignments (T) vs. programming assignments (P). For every data point in 

data set T (and likewise, P), we determine the closest distance (in our case, the absolute 

difference) to a data point in the other data set P (T). The Hausdorff Distance for the P vs. T 

scores for a student data set is the maximum of the closest distances determined as mentioned 

above. The Hausdorff Distance will be thus smaller if every data point in one data set is closer to 

some data point in the other data set.  
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For T vs. P data sets that exhibit larger disparity, we expect several data points (assignment 

scores) in one data set to be appreciably different from those of the other data set. However, even 

if there exists one outlier data point in either of the two data sets (that is farther away from the 

other data points in the two data sets), the Hausdorff Distance metric has the vulnerability to get 

larger and not be an accurate reflection of the closeness or the extent of disparity among the 

assignment scores in the two sets T and P. Figure 4 displays the computation of the Hausdorff 

Distance metric values for the running example P vs. T data set of Section 2: we observe the 

presence of a lower theoretical assignment score (0.15 corresponding to index 11 in set T) 

contributes to a relatively larger HD(T, P) value of 0.34 (note that the next largest value among 

all the minimum values computed across the two data sets is 0.21). 

 

Figure 5 presents a real-time data set comprising of the assignment scores (13 programming 

assignments and 4 theoretical assignments) for 17 students of the CSC 228 Data Structures and 

Algorithms course taught in Spring 2020 at Jackson State University, MS. Figure 6 presents the 

values for the TPD, BPI and HD metrics (also visually compared using a heat map [6]) obtained 

for the data set of 17 students as well as plots the TPD vs. BPI and TPD vs. HD distributions. In 

the heat map shown in Figure 6, the red, yellow/orange and green colors are respectively 

indicators of high, moderate and lower values for the TPD, BPI and HD metrics (all of which can 

be represented in a scale of 0 to 1). We observe the BPI and HD metrics to have a tendency of 

over rating (too much red cells for the BPI metric) and under rating (too much green cells for the 

HD metric) the theoretical vs. programming disparity. On the other hand, the values for the TPD 

metric are within a moderate range of 0.54 to 0.77 that is sufficient enough to distinguish students 

with respect to the theoretical vs. programming disparity.  

 

The tendency of the BPI and HD metrics to respectively over rate and under rate the theoretical 

vs. programming disparity can be observed in the case of students 10, 12 and 13, who all have 

just one or two submissions in one of the two categories (programming or theoretical). For such 

students, the majority of the entries are 0.0. The BPI metric tends to cluster the assignment scores 

for each of these students to two sets: a set of assignments for which submission has been made 

and a set for which no submission has been made, with the edge weights capturing the difference 

between these two sets. On the other hand, the HD metric tends to give more weight to the 

minimal difference in the scores between any two assignments. Both the BPI and HD metrics 

tend to treat all the 17 assignments as one set (i.e., one dimension) and tends to partition to two 

clusters (BPI) or find the minimum score between any two assignments; whereas, the TPD 

approach considers the problem in a two-dimensional perspective of theoretical vs. programming 

assignments; the clustering in the two-dimensional space gives leverage to consider four possible 

combinations for two clusters: the number of theoretical assignments in the sets X and Y as well 
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as the number of programming assignments in the sets X and Y identified using spectral analysis 

as well as makes use of the actual number of theoretical and programming assignments to 

compute the Euclidean distances as formulated in Section 2. Due to the different approaches 

taken, we observe only a weak-moderate correlation between the TPD vs. BPI scores and the 

TPD vs. HD scores for the data set analyzed in Figures 5 and 6. 

 

 
 

Figure 5. Real-time Data Set used to Apply and Evaluate the Proposed Approach 

 

        
 

Figure 6. Comparison the Quantitative Assessments of Theory vs. Programming Disparity using the 

Proposed Theoretical Programming Disparity (TPD) Metric vs. the Bipartivity Index (BPI) and Hausdorff 

Distance (HD) Metrics 

 

4. PRINCIPAL COMPONENT ANALYSIS-BASED APPROACH TO QUANTIFY 

THEORY VS. PROGRAMMING DISPARITY FOR AN ENTIRE CLASS 
 

In this section, we propose a principal component analysis (PCA) [22]-based approach to 

quantify the theoretical vs. programming disparity for an entire class. Such an analysis will be 

useful to come up with measures for continuous improvement in the assessment cycles of the 

degree programs in academic institutions. PCA is a classical dimensionality reduction technique 

used in data analytics research wherein the dataset comprises of a number of features that exhibit 

some level of correlation between each other. Our analysis is based on the hypothesis that the 
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performance of the students in the assignments within each category (theoretical vs. 

programming) have some level of correlation among themselves. We seek to quantify whether 

there is correlation in student performance (scores) across the two categories of assignments for 

the entire class. A negative correlation in the student scores across the categories of assignments 

is an indication of theoretical vs. programming disparity for the entire class. We will first give an 

outline of the PCA procedure, then explain the procedure to quantify the TPD value for an entire 

class and finally illustrate the execution of these procedures using two example datasets.  

 

4.1. PCA Procedure 
 

Given a raw dataset with m features and S records, we execute the following steps in this order:  

 

 (1) We first standardize the dataset using the mean and standard deviation of the values for 

each feature in the raw dataset so that the mean and standard deviation of the values for each 

feature in the standardized dataset (denoted 'Z' in this discussion) are 0 and 1 respectively.  

 (2) We determine the Covariance Matrix of Z by multiplying the transpose of Z with Z (i.e., 

Z
T
 * Z).  

 (3) We determine the Eigenvalues and Eigenvectors of the Covariance Matrix of Z. There 

will be m Eigenvalues and m Eigenvectors (an Eigenvector corresponding to each 

Eigenvalue). Each Eigenvector will have m entries, corresponding to the m features of the 

dataset. The Eigenvector corresponding to the largest Eigenvalue is called the principal 

Eigenvector.  

 (4) We determine the m principal components by multiplying the standardized dataset Z of 

dimension S x m with the Eigenvectors of dimension m x 1. The principal components will be 

of dimensions S x 1, with the entries corresponding to the S records.  

 (5) We determine the variances of the entries in each principal component and rank the 

principal components in the decreasing order of these variances. We refer to a subset (the top 

n principal components, in the decreasing order of their variances) of the m principal 

components as dominating principal components such that the sum of their variances is at 

least 80% of the sum of the variances of all the m principal components.  

 The n dominating principal components are considered to maximally capture the variances 

among the values of the m features in the original dataset with a reduced number of 

dimensions (we expect n << m).    

 

4.2. Quantifying TPD using the Principal Components 
 

Let there be a standardized dataset with mT and mP theoretical and programming assignments 

respectively. Let T-PC1, T-PC2, ..., T-PCX be the X dominating principal components generated 

based on the scores in the theoretical assignments (X << mT) and P-PC1, P-PC2, ..., P-PCY be the Y 

dominating principal components generated based on the scores in the programming assignments 

(Y << mP) in the dataset. Note that X need not be equal to Y. Let σ-T1, σ-T2, ..., σ-TX be the 

fractions of the variances of the X dominating principal components for the theoretical 

assignments vis-a-vis the sum of the variances of the mT principal components corresponding to 

the theoretical assignments. Likewise, let σ-P1, σ-P2, ..., σ-PY  be the fractions of the variances of 

the Y dominating principal components for the programming assignments vis-a-vis the sum of the 

variances of the mP principal components for the programming assignments. We determine a X x 

Y correlation matrix wherein an entry (i, j; 1 ≤ i ≤ X and 1 ≤ j ≤ Y) corresponds the Pearson's 

correlation coefficient between the i
th
 dominating principal component for the theoretical 

assignments (i.e., T-PCi)  and the j
th
 dominating principal component for the programming 

assignments (i.e., P-PCj). The TPD metric for the entire class is then computed as the weighted 

average of the X * Y Pearson's correlation coefficients, wherein the weight for an entry (i, j; 1 ≤ i 

≤ X and 1 ≤ j ≤ Y) is the product of the fractions of the variances σ-Ti and σ-Pj.  
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4.3. Example 1 
 

In this section, we use a dataset wherein there is a positive correlation (i.e., there is no disparity) 

among student scores across the theoretical and programming assignments. The dataset (see 

Figure 7) represents students scores (percentages) in 13 programming assignments (identified as 

P-1, P-2, ..., P-13 in Figure 7) and 4 theoretical assignments (identified as T-1, T-2, T-3 and T-4 

in Figure 7) in the CSC 228 Data Structures and Algorithms class offered in Spring 2020 at 

Jackson State University, MS, USA. Figure 8 presents the dominating principal components for 

the theoretical assignments (T-PC1, T-PC2) and programming assignments (P-PC1, P-PC2, P-P-

PC3 and P-PC4), their fractions of the variances vis-a-vis the sum of the variances of the 

principal components for the theoretical and programming assignments as well as the Pearson's 

correlation matrix between the entries in the dominating principal components for the theoretical 

vs. programming assignments. Figure 8 also displays the weights for the entries in the Pearson's 

correlation matrix that are computed as the products of the fractions of the variances of the 

corresponding dominating principal components of the theoretical vs. programming assignments. 

 

 
 

Figure 7. Raw Dataset 1 used for Principal Component Analysis (PCA) 

 

Based on the results presented in Figure 8, the TPD for the entire class is computed as the 

weighted average of the entries in the Pearson's correlation matrix of the dominating theoretical  

(T) vs. programming (P) principal components. The calculation is shown below.  

 

5357.0
)0099.00134.00163.00678.00548.00747.00905.03699.0(

)0980.0*0099.0()0707.0*0134.0()4601.0*0163.0()2280.0*0678.0(

)0520.0*0548.0()2862.0*0747.0()3961.0*0905.0()8638.0*3699.0(








TPD  

 

We can observe the TPD value of 0.5357 to be more than half of the Pearson's correlation 

coefficient (0.8638) between the topmost dominating principal components of the theoretical and 

programming assignments (i.e., T-PC1 and P-PC1). The positive TPD value of 0.5357 indicates 

that there is no disparity in student performance in the theoretical vs. programming assignments 

and indicates that students who score high (low) in the theoretical assignments are likely to score 

high (low) in the programming assignments as well. 
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Figure 8. Dominating Principal Components for the Theoretical (T) and Programming (P) Assignments of 

Dataset 1, Fractions of the Variances, Pearson's Correlation Matrix of the Dominating T vs. P Principal 

Components and the Weights of the Entries in the Matrix 

 

4.4. Example 2 
 

We now present the TPD calculations for another dataset (CSC 323 Algorithm Design and 

Analysis course, Fall 2021 at Jackson State University, MS, USA) wherein we indeed observe 

disparity in student performance between the theoretical (T) and programming (P) assignments. 

Figure 9 presents the raw data and Figure 10 presents the dominating principal components of the 

T vs. P assignments, their fractions of the variances and the Pearson's correlation matrix as well 

as the weights of the entries in this matrix.   

 

 
 

Figure 9. Raw Dataset 2 used for Principal Component Analysis (PCA) 

 

Based on the results presented in Figure 10, the TPD for the entire class is computed as follows:  

 

3326.0
)0185.00259.00394.00789.00735.01029.01570.03139.0(

)3013.0*0185.0()6632.0*0259.0()2502.0*0394.0()0616.0*0789.0(

)2630.0*0735.0()2573.0*1029.0()1470.0*1570.0()7820.0*3139.0(








TPD
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We can observe the TPD value of -0.3326 to be less than (but reasonably close to) half of the 

Pearson's correlation coefficient (-0.7820) between the topmost dominating principal components 

of the theoretical and programming assignments (i.e., T-PC1 and P-PC1). However, a majority of 

the entries in the Pearson's correlation coefficients matrix are negative and hence the weighted 

average of these coefficients (i.e., the TPD value) remains negative as well. The negative TPD 

value of -0.3326 indicates that there is noticeable disparity in student performance in the 

theoretical vs. programming assignments and indicates that students who score high (low) in the 

theoretical assignments are likely to score low (high) in the programming assignments. 

 

 
 
Figure 10. Dominating Principal Components for the Theoretical (T) and Programming (P) Assignments of 

Dataset 2, Fractions of the Variances, Pearson's Correlation Matrix of the Dominating T vs. P Principal 

Components and the Weights of the Entries in the Matrix 

 

5. RELATED WORK 
 

To the best of our knowledge, we have not come across any work in the literature that focuses on 

assessing and quantifying the disparity found between two different categories of assignments on 

a per-student basis. Disparity studies in academic settings have been so far mainly focused on 

gender [12] and race [13] as well as on the class, as a whole (e.g., [9-11]), and not on a per-

student basis. The closest work we have come across related to our topic is the work of [14] 

wherein the authors apply principles from phenomenography [15] and variation theory [16] to 

explore the practices that are needed to bridge the gap in learning Computer Science theory and 

learning Computer Science practice (programming). But, there are no efforts to quantify the 

extent of the gap (or the disparity), as is done in our paper.  

 

Below is a review of the works that we came across in the literature that focus on studies 

conducted to assess the contributing factors to the success or hardship for students majoring in 

Computer Science and the programming component of it. In [17], the authors did a survey to find 

out that students think Computer Science-ability is something both innate as well as extensible 

through effort. In [18], the authors surveyed Computer Science (CS) student performance data for 

10 years and conclude that a successful CS student needs to be strong both in critical thinking 

skills and the core CS skills. They observed the critical thinking skills for a CS student typically 

come from the Math and Physics courses and concluded that these courses need to be enforced as 

pre-requisites for CS courses early on in the curriculum instead of being taken along with CS 

courses. However, no analysis has been reported in [18] regarding the skills that influence the 

theory vs. programming disparity found among CS students. In [19], the authors report there is no 

statistically significant influence of the assessment mode (programming in a computer vs. writing 
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a program in pen by hand) on the performance of students in a programming course. In [20], the 

authors observed that novice programmers tend to program using problem-solving skills obtained 

from domains familiar to them. In [21], the authors used reflective essays-based Attribution 

Theory to elucidate the internal and external causes that influence the performance of students in 

their first programming course.  

 

The following works focus on analyzing the impact of one examination format on another. In [9], 

the authors build a model to predict the performance of students on the basis of examination 

formats: whether or not the performance of students in practical examinations can be predicted 

using their performance in the standardized examinations? The answer reported in [9] is No, as 

the two examination formats are observed to test different skill sets. Likewise, Haberyan [10] 

found no correlation between performance in weekly quizzes and examinations among students 

majoring in Biology. However, in [11], the authors observed that psychology undergraduates 

performed well in the examinations when they were also given weekly reading assignment-based 

quizzes throughout the course.  

 

6. CONCLUSIONS 
 

The high-level contribution of this paper is a spectral bipartivity analysis-based approach to 

quantify the disparity (the proposed metric is referred to as Theoretical vs. Programming 

Disparity: TPD metric) in the scores earned by students in two categories of assignments: 

theoretical and programming as well as a principal component analysis (PCA)-based approach to 

quantify the TPD metric for an entire class. The uniqueness of the spectral bipartivity analysis-

based approach is that it quantifies the disparity on a per-student basis; the typical approach in the 

academic community so far is to use quantitative metrics that capture the disparity for an entire 

class as a whole [8]. Also, traditionally for such problems, the correlation measures [3, 8, 9] are 

used to quantify the extent of influence on one category of assignments over another. But, to use 

correlation measures, we need to have the same number of assignments under both the categories. 

With both the spectral bipartivity analysis and principal component analysis-based approaches, 

there can be a different number of assignments for the two categories. The pre-requisites for the 

spectral analysis-based approach are just the need to input the classification of the assignments 

ids (as either theoretical or programming) and the actual number of assignments under the two 

categories. We have demonstrated the characteristics, uniqueness and effectiveness of both the 

spectral bipartivity analysis and the PCA-based approaches through exhaustive evaluations with 

real-time datasets as well as through comparisons with quantitative metrics that appear to be 

compelling enough to be suitable to capture the disparity in the student scores in the assignment 

categories. The disparity problem on a per-student basis among two data sets of uneven size, 

especially in an academic setting, has not been so far considered in the literature for quantitative 

evaluation; likewise, there is no prior work that does dimensionality reduction and uses the 

principal components for the scores in theoretical and programming assignments to quantify the 

TPD metric for an entire class. We expect the proposed computation approaches to quantify TPD 

for a student and for an entire class would be valuable to both academicians and researchers. 

 

ACKNOWLEDGEMENTS 
 

The author would like to thank everyone, just everyone! 

 

 

 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 5, October 2022 

14 

REFERENCES 
 
[1] Estrada, E, (2010) "Structural Patterns in Complex Networks through Spectral Analysis," 

Proceedings of the 2010 Joint IAPR International Conference on Structural, Syntactic, and Statistical 

Pattern Recognition, pp. 45-59. Springer-Verlag, Cesme Izmir, Turkey. 

[2] Sarkar, C., and Jalan, (2018) "Spectral Properties of Complex Networks," Chaos: An 

Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 10, 102101. 

[3] Strang, G (2019) Linear Algebra and Learning from Data, 1st edition, Wellesley-Cambridge Press, 

Wellesley, MA, USA. 

[4] Ernada, E., and Rodriguez-Velazquez, J. A (2005) "Spectral Measures of Bipartivity in Complex 

Network," Physical Review E, vol. 72, no. 4, 2, 046105.  

[5] Birsan, T., and Tiba, D (2006) "One Hundred Years since the Introduction of the Set Distance by 

Dimitrie Pompeiu," Proceedings of the IFIP Conference on System Modeling and Optimization, vol. 

199, pp. 35-39. Springer, Turin, Italy. 

[6] Wilkinson, L., and Friendly, M (2009) "The History of the Cluster Heat Map," The American Stat-

istician, vol. 63, no. 2, pp. 179-184. 

[7] Godsil, C., and Royle, G. F (2013) Algebraic Graph Theory, 1st edition, Springer, Berlin, Germany. 

[8] Caven, M (2019) "Quantification, Inequality, and the Contestation of School Closures in 

Philadelphia," Sociology of Education, vol. 92, no. 1, pp. 21-40. 

[9] Davison, C. B., and Dustova, G (2017) "A Quantitative Assessment of Student Performance and 

Examination Format," Journal of Instructional Pedagogies, vol. 18, pp. 1-10. 

[10] Haberyan, K. (2003) "Do Weekly Quizzes Improve Student Performance on General Biology 

Exams?" The American Biology Teacher, vol. 65, pp. 110-114. 

[11] Johnson, B. C., and Kiviniemi, M. T (2009) "The Effect of Online Chapter Quizzes on Exam 

Performance in an Undergraduate Social Psychology Course," Teaching of Psychology, vol. 36, no. 1, 

pp. 33-37. 

[12] Master, A., Meltzoff, A. N., and Cheryan, S (2021) "Gender Stereotypes about Interests Start Early 

and Cause Gender Disparities in Computer Science and Engineering," Proceedings of the National 

Academy of Sciences of the United States of America, vol. 118, no. 48, e2100030118. 

[13] Kozlowski, D., Lariviere, V., Sugimoto, C. R., and Monroe-White, T (2002) "Intersectional 

Inequalities in Science," Proceedings of the National Academy of Sciences of the United States of 

America, vol. 119, no. 2, e2113067119. 

[14] Thune, M., and Eckerdal, A (2019) "Analysis of Students' Learning of Computer Programming in a 

Computer Laboratory Context," European Journal of Engineering Education, vol. 44, no. 5, pp. 769-

786. 

[15] Farton, M (1986) "Phenomenography - A Research Approach Investigating Different Understandings 

of Reality," Journal of Thought, vol. 21, no. 2, pp. 28-49. 

[16] Bussey, T. J., Orgill, M., and Crippen, K. J (2013) "Variation Theory: A Theory of Learning and a 

Useful Theoretical Framework for Chemical Education Research," Chemical Education Research 

Practice, vol. 14, pp. 9-22. 

[17] Lewis, C. M., Yasuhara, K., and Anderson, R. E (2011). "Deciding to Major in Computer Science: A 

Grounded Theory of Students' Self-Assessment of Ability," Proceedings of the 7th International 

Workshop on Computing Education Research, pp. 3-10, ACM, Providence, RI, USA. 

[18] Yang, H., Olson, T. W., and Puder, A (2021) "Analyzing Computer Science Students' Performance 

Data to Identify Impactful Curricular Changes," Proceedings of the IEEE Frontiers in Education 

Conference, pp. 1-9, IEEE, Lincoln, NE, USA. 

[19] Oqvist, M., and Nouri, J (2018) "Coding by Hand or on the Computer? Evaluating the Effect of 

Assessment Mode on Performance of Students Learning Programming," Journal of Computers in 

Education, vol. 5, pp. 199-219. 

[20] Wellons, J., and Johnson, J (2011) "A Grounded Theory Analysis of Introductory Computer Science 

Pedagogy," Systemics, Cybernetics and Informatics, vol. 9, no. 6, pp. 9-14. 

[21] Vivian, R., Falkner, K., and Falkner, N (2013) "Computer Science Students' Casual Attributions for 

Successful and Unsuccessful Outcomes in Programming Assignments," Proceedings of the 13th Koli 

Calling International Conference on Computing Education Research, pp. 125-134, ACM, Koli, 

Finland. 

[22]  Jolliffe, I. T (2002) Principal Component Analysis, Springer Series in Statistics, New York, USA.  

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 5, October 2022 

15 

AUTHORS 

 

Natarajan Meghanathan is a tenured Full Professor of Computer Science at Jackson 

State University, MS, USA. He graduated with a PhD in Computer Science from The 

University of Texas at Dallas in 2005. His primary areas of research interests are Network 

Science, Machine Learning and Cyber Security. He has authored more than 175 peer-

reviewed research publications in these areas. 

 

 

 


