Open Access
Subscription Access
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Module
In this paper, we introduce the concept of residual quotient of intuitionistic fuzzy subsets of ring and module and then define the notion of residual quotient intuitionistic fuzzy submodules , residual quotient intuitionistic fuzzy ideals. We study many properties of residual quotient relating to union, intersection, sum of intuitionistic fuzzy submodules (ideals). Using the concept of residual quotient, we investigate some important characterization of intuitionistic fuzzy annihilator of subsets of ring and module. We also study intuitionistic fuzzy prime submodules with the help of intuitionistic fuzzy annihilators. Many related properties are defined and discussed.
Keywords
Intuitionistic Fuzzy (prime) Submodule (ideal), Residual Quotient Intuitionistic Fuzzy Submodules (ideal), Intuitionistic Fuzzy Annihilator, Semiprime Ring.
User
Font Size
Information
- K. T. Atanassov,(1986) , Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, No. 1, pp., 8796.
- K. T. Atanassov, (1999) ,Fuzzy sets, Theory and Applications, Studies in fuzziness and soft computing, 35, Physica-Verlag, Heidelberg.
- I. Bakhadach , S. Melliani, M. Oukessou and S.L. Chadli,(2016), Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring, Notes on Intuitionistic Fuzzy Sets, Vol. 22, no. 2 pp 59-63.
- D.K. Basnet,(2011) ,Topic in intuitionistic fuzzy algebra, Lambert Academic Publishing, ISBN : 9783-8443-9147-3.
- R. Biswas, (1989) , Intuitionistic fuzzy subgroups, Math. Forum, Vol. 10, pp 37–46.
- E. Bland Paul, (2011), Rings and their modules, published by the Deutsche National Bibliothek, Germany ISBN: 978-3-11-025022-0.
- B. Davvaz, W.A. Dudek, Y.B. Jun,(2006), Intuitionistic fuzzy Hv-submodules, Information Sciences, Vol. 176, pp 285-300.
- K. Hur, H.K. Kang and H.K. Song, (2003), Intuitionistic fuzzy subgroup and subrings, Honam Math J. Vol. 25, No. 1, pp 19-41.
- P. Isaac, P.P. John, (2011), On intuitionistic fuzzy submodules of a module, Int. J. of Mathematical Sciences and Applications, Vol. 1, No. 3, pp 1447-1454.
- D. S. Malik and J. N. Mordeson, (1998), Fuzzy Commutative Algebra, World Scientific Publishing Co-Pvt. Ltd.
- K. Meena and K. V. Thomas, (2011), Intuitionistic L-Fuzzy Subrings, International Mathematical Forum, Vol. 6, No. 52, pp 2561 – 2572.
- P.K. Sharma, (2011), (α, β)-Cut of Intuitionistic fuzzy modules- II, International Journal of Mathematical Sciences and Applications, Vol. 3 , No. 1, pp. 11-17.
- P. K. Sharma and Gagandeep Kaur, (2016) , Intuitionistic fuzzy superfluous modules, Notes on Intuitionistic Fuzzy Sets, Vol. 22, No. 3, pp 34-46.
- S. Rahman, H.K. Sailia, (2012) , Some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, Vol. 77, No. 3, pp 369-383.
- H.K. Saikia and M.C. Kalita, (2009) , On Annihilator of fuzzy subsets of modules, Internal Journal of Algebra Vol. 3, No. 10, pp. 483- 488.
- L. A. Zadeh, (1965), Fuzzy sets , Information and Control, Vol. 8, pp 338–353.
Abstract Views: 378
PDF Views: 184