An Algorithm for Automatically Detecting Dyslexia on the Fly
There are different types of algorithms used in eye tracking technologies. These algorithms are divided into two main categories: feature-based and model-based. Feature-based technologies consist of threshold values, which are used to decide the presence or absence of features or determinant factors. While the model-based approach is an iterative search of a model parameter, which is the best fitting model that is a closest match to the image. However, these approaches have significant problems regarding computational speed and accuracy.
Similarly, there are different types of eye – tracking technologies, which depend on different types of technologies such as infrared video cameras and other technologies, which require specific calibration and setup and are quite expensive. Therefore, in this paper, we propose an alternative eye–tracking technology using a new eye-tracking algorithm, which is highly portable and independent of any hardware or software systems. In an evaluation the algorithm worked accurately for users with strong dyslexia. Participants had various positive and negative opinions regarding such an auto-detection system. Furthermore, we propose that such technology could be used to automatically modify the content of online material to better suit dyslexic users.
Keywords
- Dodge, R., & Cline, T. S. (1901). The angle velocity of eye movements. Psychological Review, 8(2), 145.
- Jacob, R. J., &Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.
- Shahzad, M. I., &Mehmood, S. (2010). Control of articulated robot arm by eye tracking.
- Huey, E. B. (1908). The psychology and pedagogy of reading. The Macmillan Company.
- Tinker, M. A. (1963). Influence of simultaneous variation in size of type, width of line, and leading for newspaper type. Journal of Applied Psychology, 47(6), 380.
- Russell, M. C. (2005). Hotspots and hyperlinks: Using eye-tracking to supplement usability testing.
- Usability News, 7(2), 1-11.
- Hartridge, H., & Thomson, L. C. (1948). Methods of investigating eye movements. The British journal of ophthalmology, 32(9), 581.
- Levin, S., Holzman, P. S., Rothenberg, S. J., & Lipton, R. B. (1981). Saccadic eye movements in psychotic patients. Psychiatry Research, 5(1), 47-58.
- Hutchinson, T. E., White, K. P., Martin, W. N., Reichert, K. C., & Frey, L. A. (1989). Humancomputer interaction using eye-gaze input. IEEE Transactions on systems, man, and cybernetics, 19(6), 1527-1534.
- Leggett, D. (2010, January 19). A Brief History of Eye-Tracking | UX Booth. Retrieved from http://www.uxbooth.com/articles/abrief-history-of-eye-tracking/
- Li, D., Winfield, D., & Parkhurst, D. J. (2005). Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. Paper presented at the Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on.
- Baluja, S., &Pomerleau, D. (1994). Non-intrusive gaze tracking using artificial neural networks [13] Alnajar, F., Gevers, T., Valenti, R., &Ghebreab, S. (2013). Calibration-free gaze estimation using human gaze patterns. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.
- Huang, M. X., Kwok, T. C., Ngai, G., Chan, S. C., & Leong, H. V. (2016). Building a personalized, auto-calibrating eye tracker from user interactions. Paper presented at the Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
- Xu, P., Ehinger, K. A., Zhang, Y., Finkelstein, A., Kulkarni, S. R., & Xiao, J. (2015). Turkergaze: Crowdsourcing saliency with webcam based eye tracking. arXiv preprint arXiv:1504.06755.
- Smeets, J. B., &Hooge, I. T. (2003). Nature of variability in saccades. Journal of neurophysiology, 90(1), 12-20.
- Nyström, M., &Holmqvist, K. (2010). An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behavior research methods, 42(1), 188-204
- Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures: OUP Oxford
- Olsson, P. (2007). Real-time and offline filters for eye tracking
- Marple-Horvat, D. E., Gilbey, S. L., & Hollands, M. A. (1996). A method for automatic identification of saccades from eye movement recordings. Journal of Neuroscience Methods, 67(2), 191-195
- Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. Paper presented at the Proceedings of the 2000 symposium on Eye tracking research & applications.
- Hayes, T. L., Abendroth, F., Adami, A., Pavel, M., Zitzelberger, T. A., & Kaye, J. A. (2008).
- Unobtrusive assessment of activity patterns associated with mild cognitive impairment. Alzheimer's & Dementia, 4(6), 395-405.
- Kaye, J. A., Maxwell, S. A., Mattek, N., Hayes, T. L., Dodge, H., Pavel, M., ... &Zitzelberger, T. A.
- (2011). Intelligent systems for assessing aging changes: home-based, unobtrusive, and continuous assessment of aging. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 66(suppl_1), i180-i190.
- Dwolatzky, T., Whitehead, V., Doniger, G. M., Simon, E. S., Schweiger, A., Jaffe, D., &Chertkow, H. (2003). Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC geriatrics, 3(1), 4.
- Gutman, M., Moskovic, E., & Jeret, J. S. (2016). Computerised cognitive testing of individuals with Down's syndrome and Alzheimer's disease. Journal of Intellectual Disability Research, 60(2), 179181.
- Saeb, S., Zhang, M., Karr, C. J., Schueller, S. M., Corden, M. E., Kording, K. P., & Mohr, D. C.
- (2015). Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. Journal of medical Internet research, 17(7).
- Sikka, K., Ahmed, A. A., Diaz, D., Goodwin, M. S., Craig, K. D., Bartlett, M. S., & Huang, J. S.
- (2015). Automated assessment of children’s postoperative pain using computer vision. Pediatrics, 136(1), e124-e131.
- Rello, L. (2014). DysWebxia: a text accessibility model for people with dyslexia [29] Pavlidis, G. (1989). U.S. Patent No. 4,889,422. Washington, DC: U.S. Patent and Trademark Office.
- Pavlidis, G. T. (1978). The dyslexics erratic eye movements: Case studies. Dyslexia review, 1(1), 2228.
- Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455-470.
- Hansen, D. W., & Ji, Q. (2010). In the eye of the beholder: A survey of models for eyes and gaze.
- IEEE transactions on pattern analysis and machine intelligence, 32(3), 478-500.
- Lupu, R. G., Ungureanu, F., &Siriteanu, V. (2013, November). Eye tracking mouse for human computer interaction. In E-Health and Bioengineering Conference (EHB), 2013 (pp. 1-4). IEEE.
- Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.
- Psychological bulletin, 124(3), 372.
- Hyönä, J., & Olson, R. K. (1995). Eye fixation patterns among dyslexic and normal readers: effects of word length and word frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(6), 1430
- Hutzler, F., &Wimmer, H. (2004). Eye movements of dyslexic children when reading in a regular orthography. Brain and language, 89(1), 235-242
- Tinker, M. A. (1946). The study of eye movements in reading. Psychological bulletin, 43(2), 93
- Tinker, M. A. (1958). Recent studies of eye movements in reading. Psychological bulletin, 55(4), 215
- Rayner, K. (1985). The role of eye movements in learning to read and reading disability. Remedial and Special Education, 6(6), 53-60
- Eden, G., Stein, J., Wood, H., & Wood, F. (1995). Differences in eye movements and reading problems in dyslexic and normal children. Ophthalmic Literature, 2(48), 137
- Rayner, K., Murphy, L. A., Henderson, J. M., & Pollatsek, A. (1989). Selective attentional dyslexia.
- Cognitive Neuropsychology, 6(4), 357-378
- Underwood, N. R., & Zola, D. (1986). The span of letter recognition of good and poor readers.
- Reading Research Quarterly, 6-19
- Adler-grinberg, D., & Stark, L. (1978). Eye movements, scanpaths, and dyslexia. Optometry & Vision Science, 55(8), 557-570
- Borsting, E. (2002). Dyslexia and Vision: LWW
- Lefton, L. A., Nagle, R. J., Johnson, G., & Fisher, D. F. (1979). Eye movement dynamics of good and poor readers: Then and now. Journal of Reading Behavior, 11(4), 319-328
- De Luca, M., Di Pace, E., Judica, A., Spinelli, D., &Zoccolotti, P. (1999). Eye movement patterns in linguistic and non-linguistic tasks in developmental surface dyslexia. Neuropsychologia, 37(12), 1407-1420
- Papoutsaki, A., Daskalova, N., Sangkloy, P., Huang, J., Laskey, J., & Hays, J. (2016). WebGazer: scalable webcam eye tracking using user interactions.
- Mathias, A. (2015). clmtrackr: Javascript library for precise tracking of facial features via Constrained Local Models
- Garaizar, P., &Guenaga, M. (2014). A multimodal learning analytics view of HTML5 APIs: technical benefits and privacy risks. Paper presented at the Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality
- Lundgren, E., Rocha, T., Rocha, Z., Carvalho, P., & Bello, M. (2015). tracking. js: A modern approach for Computer Vision on the web. Online]. Dosegljivo: https://trackingjs. com/[Dostopano 30. 5. 2016]
- Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67
- Norwegian Centre for Research Data (2017) http://www.nsd.uib.no/nsd/english/index.html, Accessed December 2017
- Benfatto, M. N., Seimyr, G. Ö., Ygge, J., Pansell, T., Rydberg, A., & Jacobson, C. (2016). Screening for Dyslexia Using Eye Tracking during Reading. PloS one, 11(12), e0165508
- Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): what have we learned in the past four decades? Journal of child psychology and psychiatry, 45(1), 2-40
- Rayner, K., Pollatsek, A., Ashby, J., & Clifton Jr, C. (2012). Psychology of reading: Psychology Press
- Tseng, P.-H., Cameron, I. G., Pari, G., Reynolds, J. N., Munoz, D. P., &Itti, L. (2013). Highthroughput classification of clinical populations from natural viewing eye movements. Journal of neurology, 260(1), 275-284
- Wang, S., Jiang, M., Duchesne, X. M., Laugeson, E. A., Kennedy, D. P., Adolphs, R., & Zhao, Q.
- (2015). Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron, 88(3), 604-616.
Abstract Views: 313
PDF Views: 140