The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Disabled people can overcome their disabilities in carrying out daily tasks in many facilities [1]. However, they frequently report that they experience difficulty being independently mobile. And even if they can, they are likely to have some serious accidents such as falls. Furthermore, falls constitute the second leading cause of accidental or injury deaths after injuries of road traffic which call for efficient and practical/comfortable means to monitor physically disabled people in order to detect falls and react urgently. Computer vision (CV) is one of the computer sciences fields, and it is actively contributing in building smart applications by providing for image\video content “understanding.” One of the main tasks of CV is detection and recognition. Detection and recognition applications are various and used for different purposes. One of these purposes is to help of the physically disabled people who use a cane as a mobility aid by detecting the fall. This paper surveys the most popular approaches that have been used in fall detection, the challenges related to developing fall detectors, the techniques that have been used with the Kinect in fall detection, best points of interest (joints) to be tracked and the well-known Kinect-Based Fall Datasets. Finally, recommendations and future works will be summarized.

Keywords

Fall Detection, Kinect Camera, Physically Disabled People, Mobility Aid Systems.
User
Notifications
Font Size