





Gain And Bandwidth Enhancement With Dual-port UWB-MIMO Microstrip Antenna For Satellite Communications
Subscribe/Renew Journal
In this paper, a compact (22×22×1.6 mm3) dual-port UWB (Ultra-wideband) MIMO (Multiple-input-multiple-output) microstrip antenna are perceived with gain, bandwidth and isolation enhancement for downlink of the X-band satellite communications. The proposed MIMO antenna system consists of two identical glue gun-shaped radiating element associated with ground plane as well as co-axial feeds. Four antenna designs (A1-A4) are systematically inspected of proposed antenna (A4) have been elevated for desired antenna parameters and operations. The proposed and measured dual-band behavior at (7.99- 8.38) GHz and (9.10-12.97) GHz with impedance bandwidth of 5.13% and 35.07% respectively for port-1 and (7.96-8.39) GHz and (9.10- 13.03) GHz with impedance bandwidth of 5.13% and 35.51% respectively at port-2 is observed and moreover achieved the pentresonances has 8.10 GHz, 9.65 GHz, 10.92 GHz, 11.97 GHz and 12.61 GHz with peak gain of 2.67 dBi, 6.78 dBi, 5.90 dBi, 5.03 dBi and 3.79 dBi respectively at port-1 and 8.10 GHz, 9.65 GHz, 10.92 GHz, 11.97 GHz and 12.61 GHz with peak gain of 2.67 dBi, 6.78 dBi, 5.90 dBi, 5.03 dBi and 3.79 dBi respectively at port-2. The proposed antenna has minimum isolation less than -15 dB (a major portion < -20 dB), envelope correlation coefficient (ECC) less than 0.0451, diversity gain (DG) between 9.954-9.996, total active reflection coefficient (TARC) less than -10 dB, antenna gain varies in the range of (2.67-6.78) dBi and radiation efficiency up to 75% is obtained during the entire operating frequency bands. The simulated and measured results of the proposed antenna have been validated and minor deviation between simulated and measured results has been observed. The proposed design is simulated on FR-4 epoxy substrate (εr= 4.4, tan δ = 0.02 and h = 1.6 mm) with carried out by ANSOFT HFSS 13 electromagnetic solver.
Keywords
MIMO Antenna, Radiation Efficiency, DG, ECC and TARC
Subscription
Login to verify subscription
User
Font Size
Information