





HIGH PERFORMANCE FIR FILTER BASED ON PIPELINED PARALLEL PREFIX ADDER FOR SIGNAL PROCESSING APPLICATIONS
Subscribe/Renew Journal
Multiple adders and multipliers make up a complex digital signal processing system (DSP). The efficient design of adders and multipliers improves the DSP system performance. In this paper, modified 4-Tap digital Finite Impulse Response (FIR) filter is built using the Pipelined Brent-Kung adder (PBKA) and a Vedic multiplier. The top-level module (FIR filter) is created by writing PBKA and PBKA-based Vedic multiplier Verilog code. The results of Pipelined Brent Kung adderbased FIR filter are compared with BKA and KSA-based 4-Tap digital FIR filter. According to the synthesis results, the PBKA-based FIR filter operates 57% faster than the BKA-based FIR filter. In terms of Power Delay Product (PDP) PBKA based FIR filter is 22% efficient than BKA based FIR filter. Xilinx 14.7 ISE software is used for simulation, while Virtex-7 FPGA is used for synthesis
Keywords
Brent Kung Adder, FIR Filter, Kogge Stone Adder, Parallel Prefix Adder, Pipelined Brent Kung Adder, Vedic Multiplier, Virtex 7 FPGA
Subscription
Login to verify subscription
User
Font Size
Information