Open Access
Subscription Access
Open Access
Subscription Access
Performance Evaluation of Distance Measures in Proposed Fuzzy Texture Model for Land Cover Classification of Remotely Sensed Image
Subscribe/Renew Journal
Land cover classification is a vital application area in satellite image processing domain. Texture is a useful feature in land cover classification. The classification accuracy obtained always depends on the effectiveness of the texture model, distance measure and classification algorithm used. In this work, texture features are extracted using the proposed multivariate descriptor, MFTM/MVAR that uses Multivariate Fuzzy Texture Model (MFTM) supplemented with Multivariate Variance (MVAR). The K_Nearest Neighbour (KNN) algorithm is used for classification due to its simplicity coupled with efficiency. The distance measures such as log likelihood, Manhattan, Chi squared, Kullback Leibler and Bhattacharyya were used and the experiments were conducted on IRS P6 LISS-IV data. The classified images were evaluated based on error matrix, classification accuracy and Kappa statistics. From the experiments, it is found that log likelihood distance with MFTM/MVAR descriptor and KNN classifier gives 95.29% classification accuracy.
Keywords
Land Cover Classification, Kullback Leibler, Log Likelihood, Chi Squared, Bhattacharyya.
Subscription
Login to verify subscription
User
Font Size
Information
Abstract Views: 202
PDF Views: 0