Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Reptree Classifier for Identifying Link Spam in Web Search Engines


Affiliations
1 Department of Computer Science, Vellalar College for Women, India
2 Department of Computer Science, KSR College of Arts and Science, India
     

   Subscribe/Renew Journal


Search Engines are used for retrieving the information from the web. Most of the times, the importance is laid on top 10 results sometimes it may shrink as top 5, because of the time constraint and reliability on the search engines. Users believe that top 10 or 5 of total results are more relevant. Here comes the problem of spamdexing. It is a method to deceive the search result quality. Falsified metrics such as inserting enormous amount of keywords or links in website may take that website to the top 10 or 5 positions. This paper proposes a classifier based on the Reptree (Regression tree representative). As an initial step Link-based features such as neighbors, pagerank, truncated pagerank, trustrank and assortativity related attributes are inferred. Based on this features, tree is constructed. The tree uses the feature inference to differentiate spam sites from legitimate sites. WEBSPAM-UK-2007 dataset is taken as a base. It is preprocessed and converted into five datasets FEATA, FEATB, FEATC, FEATD and FEATE. Only link based features are taken for experiments. This paper focus on link spam alone. Finally a representative tree is created which will more precisely classify the web spam entries. Results are given. Regression tree classification seems to perform well as shown through experiments.

Keywords

Web Link Spam, Classification, Reptree, Decision Tree, Search Engine.
Subscription Login to verify subscription
User
Notifications
Font Size

Abstract Views: 227

PDF Views: 0




  • Reptree Classifier for Identifying Link Spam in Web Search Engines

Abstract Views: 227  |  PDF Views: 0

Authors

S. K. Jayanthi
Department of Computer Science, Vellalar College for Women, India
S. Sasikala
Department of Computer Science, KSR College of Arts and Science, India

Abstract


Search Engines are used for retrieving the information from the web. Most of the times, the importance is laid on top 10 results sometimes it may shrink as top 5, because of the time constraint and reliability on the search engines. Users believe that top 10 or 5 of total results are more relevant. Here comes the problem of spamdexing. It is a method to deceive the search result quality. Falsified metrics such as inserting enormous amount of keywords or links in website may take that website to the top 10 or 5 positions. This paper proposes a classifier based on the Reptree (Regression tree representative). As an initial step Link-based features such as neighbors, pagerank, truncated pagerank, trustrank and assortativity related attributes are inferred. Based on this features, tree is constructed. The tree uses the feature inference to differentiate spam sites from legitimate sites. WEBSPAM-UK-2007 dataset is taken as a base. It is preprocessed and converted into five datasets FEATA, FEATB, FEATC, FEATD and FEATE. Only link based features are taken for experiments. This paper focus on link spam alone. Finally a representative tree is created which will more precisely classify the web spam entries. Results are given. Regression tree classification seems to perform well as shown through experiments.

Keywords


Web Link Spam, Classification, Reptree, Decision Tree, Search Engine.