Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

An Integrated Deep Learning Approach for Sentiment Analysis on Twitter Data


Affiliations
1 TATA Consultancy Services, Bengaluru, India
2 Department of Computer Science and Engineering, SNS College of Technology, India
     

   Subscribe/Renew Journal


Analysis of Sentiment (SA) is a computational technique that seeks to extract subjective evaluations, attitudes, and emotional states from online platforms, specifically social media sites like Twitter. The subject has gained significant traction within the research community. The predominant emphasis of traditional sentiment analysis lies in the analysis of textual data. Twitter is widely recognized as a prominent online social networking platform that facilitates microblogging, wherein users share updates pertaining to various subjects through concise messages known as tweets. Twitter is a widely utilized platform that enables individuals to articulate their perspectives and emotions through the medium of tweets. Sentiment analysis refers to the computational methods of classification of given data in text format, categorizing it as either positive, negative, or neutral. The main goal of this study is to use deep learning methods for SA. The purpose is to guess sentiment and then evaluate the results based on accuracy, recall, and f-score. In this paper, a hybrid approach combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) techniques, specifically referred to as PSOGA, is proposed to optimize features for a modified neural network (MNN). The final step is to use the K-fold cross-validation method to assess the results. The dataset was obtained through the utilization of the Ruby Twitter API. The ultimate outcome is juxtaposed with the preceding Cuckoo Search (CS) algorithm that had been terminated.

Keywords

Tweeter, Deep Learning, K-Fold Cross Validation, HDFS, Modified Neural Network.
Subscription Login to verify subscription
User
Notifications
Font Size


  • An Integrated Deep Learning Approach for Sentiment Analysis on Twitter Data

Abstract Views: 189  |  PDF Views: 2

Authors

N. S. Prabakaran
TATA Consultancy Services, Bengaluru, India
S. Karthik
Department of Computer Science and Engineering, SNS College of Technology, India

Abstract


Analysis of Sentiment (SA) is a computational technique that seeks to extract subjective evaluations, attitudes, and emotional states from online platforms, specifically social media sites like Twitter. The subject has gained significant traction within the research community. The predominant emphasis of traditional sentiment analysis lies in the analysis of textual data. Twitter is widely recognized as a prominent online social networking platform that facilitates microblogging, wherein users share updates pertaining to various subjects through concise messages known as tweets. Twitter is a widely utilized platform that enables individuals to articulate their perspectives and emotions through the medium of tweets. Sentiment analysis refers to the computational methods of classification of given data in text format, categorizing it as either positive, negative, or neutral. The main goal of this study is to use deep learning methods for SA. The purpose is to guess sentiment and then evaluate the results based on accuracy, recall, and f-score. In this paper, a hybrid approach combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) techniques, specifically referred to as PSOGA, is proposed to optimize features for a modified neural network (MNN). The final step is to use the K-fold cross-validation method to assess the results. The dataset was obtained through the utilization of the Ruby Twitter API. The ultimate outcome is juxtaposed with the preceding Cuckoo Search (CS) algorithm that had been terminated.

Keywords


Tweeter, Deep Learning, K-Fold Cross Validation, HDFS, Modified Neural Network.

References