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ABSTRACT: 

The crankshaft is the crucial mechanical component in many machines and engines and its fatigue assessment is often 

very time consuming and expensive. The machine designer usually needs a simple theoretical model that would allow 

choosing the best material and the dimensions of the component in a quick and reliable way. The numerical finite 

element simulation of crankshafts should follow the first step of theoretical dimensioning with the aim of evaluating the 

stress-strain behaviour at the notched area to verify the component against fatigue failure. The development of an 

intermediate theoretical model would prove effective to reduce the time needed to reach a second approximation design 

of the crankshaft. The aim of this paper is to give the designer a theoretical procedure that allows determining the 

strain and stress state for verification of crankshafts. The model was developed in the case of crankshafts with two 

connecting rods and validated by means of numerical finite element modelling and analysis. 
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NOMENCLATURE: 

a  Axial reference coordinate of the crankshaft, in the plane of 

the structure 

A Cross section area 

Acheek  Cross section area of the cheek 

Acrankpin  Cross section area of the crankpin 

Acrankshaft  Cross section area of the crankshaft 

E  Longitudinal modulus of elasticity of the material 

G  Shear modulus of elasticity of the material 

Ix, Iy, Iz  Moment of inertia around the x, y & z direction respectively 

Jcrankshaft  Moment of inertia of the crankshaft 

Jcheek  Moment of inertia of the cheek  

Jcrankpin  Moment of inertia of the crankpin 

Jtcheek  Polar moment of inertia of the cheek  

Ma  Moment around axis a  

Mx  Torque  

My, Mz  Moment around the y & z axis respectively 

Mx’ Torque for the fictitious structure in virtual work 

My’, Mz’ Moment around the y & z direction respectively for the  

 fictitious structure in  the principle of virtual work  

Mft,, Mfn Bending along the t and n direction respectively 

Mfx Bending along the x direction 

Mn, Mt Moment around axis n and t respectively 

MGn, MGt Weight along the n and t direction respectively 

n  Ref. coord. of the crankshaft, in the plane of the structure  

N Axial force 

N’ Axial force for the fictitious structure in the principle of  

 virtual work 

N1, N2 External force acting on the crankshaft for the 1st and  

 2nd crank respectively, in the plane of the structure 

NA, NB, NC Reaction force at support A, B & C respectively 

s  Local coordinate along the structure 

t  Reference coordinate of the crankshaft, perpendicular to  

 the plane of the structure 

T1, T2 External force acting on the crankshaft for the 1st and 2nd   

 crank respectively, in the plane perpendicular to one of the  

 structure 

TA, TB, TC Reaction force at support A, B & C respectively 

Tn, Tt Shear force in the n & t direction respectively 

Ty, Tz  Shear force in the y and z direction respectively 

Ty’, Tz’  Shear force in the y and z direction respectively for the  

 fictitious structure in the principle of virtual work 

η  Displacement 

χ  Shear factor 

χy, χz Shear factor in the y & z direction respectively  

1. Introduction 

The development of a new component first needs the 

assessment of the principal dimensions and then the 

optimization against fatigue, failure, wear and corrosion. 

The crankshaft is a historical component for the internal 

combustion engines and the literature gives a lot of 

design criteria and procedures for the development of 

new crankshafts or the optimization of existing ones [1-

4]. Dynamic, vibration and fatigue failure analyses of 

this component can be found in many references such as 

[5, 6]. References on surface mechanical or chemical 

treatments that could enhance the fatigue performances 

are also available [7-14]. Among such treatments surface 

rolling, nitriding and shot peening are the most used ones 

just because they induce a surface compression 

favourable stress state that inhibits nucleation and 

propagation of fatigue cracks. The aforementioned 

treatments have been used for many decades and still 

today they are commonly used to improve the reliability 

and fatigue resistance of many mechanical components. 

Mechanical treatments work harden the surface of the 

component, increasing its hardness and inducing 

compressive favourable residual stresses. A discrete 

enhancement in the fatigue resistance of the crankshaft 

can be achieved by rolling the rounded connections 

between the cheeks, the crankpins and the crankshaft 

journal areas. Better improvements might be achieved 
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introducing new technologies such as the surface thin 

hard coatings that have been more and more used and 

introduced in many mechanical applications in the last 

few decades in order to improve wear and fatigue 

resistance of mechanical components [15-18].  

PVD coatings in particular may represent a useful 

device to enhance the fatigue behaviour of crankshafts. 

The coating can be physically vapour deposited on the 

surface of the component at the areas where 

enhancement of wear, contact fatigue and fatigue 

resistance are needed. The coating deposition greatly 

improves the surface properties: hardness and residual 

stresses can reach quite high values and the residual 

stresses can approach surface compression values in the 

range of 1500-2500 MPa, much higher than the 

compressive stresses induced by the mechanical or 

thermo-mechanical treatments. Bearing these last 

considerations in mind, the fatigue resistance of a 

crankshaft is not only dependent on the geometry and 

mechanical properties, but is surely strongly dependent 

on the load history, the induced stress state and residual 

stress state due to surface treatments or thin hard 

coatings, by the surface hardness and a lot of 

technological factors. 

Theoretical and numerical methods allow the 

dimensioning and final design of the crankshaft and for a 

first evaluation of the principal dimensions of the 

component. The machine designer can reach a first 

approximation of the final shape of the crankshaft by 

implementing the procedures described in many useful 

and thoroughly adopted machine design books such as 

[19]. Such models allow dividing the hyperstatic 

component in many isostatic pieces and theoretically 

solving the problem of the stress evaluation in a very 

fast, even though quite approximate way. A better 

approximation can be achieved using higher order much 

more articulated procedures such as the one reported in 

[20]. Such procedures require the skills of an expert 

CAE machine design engineer: the model definition, 

analysis and results elaboration are usually time 

consuming and often need the validation through the 

development of experimental procedures (strain gages 

strain-stress measurement and displacements 

evaluation). Notwithstanding the model described in [20] 

requires the development of finite element procedures it 

is surely more reliable than the former. Moreover FEM 

modelling allows development of forecasting procedures 

able to take into consideration any combination of loads, 

boundary conditions, pre-stress, residual stresses and 

surface treatment [19-24].  

In [20], authors developed experimental, numerical 

and theoretical procedures for the bending stress 

concentration evaluation of a marine diesel engine 

crankshaft and assessment of its fatigue resistance. Crack 

fillets stress concentrations were measured through the 

utilization of linear strain gauges on a full scale strain 

gauged crankshaft mounted, by means of appositely 

designed gripping devices, on a universal testing 

machine. 3D FEM models allowed the calculation of the 

bending and torsion stress concentration factors and 

proceed with the fatigue resistance analysis. In [21] a 

campaign of full scale experimental tests was carried out 

with the aim of validating numerical FEM models and to 

assess internal combustion engine crankshaft mechanical 

parameters. The residual stress field was mapped in the 

most stressed areas of the component. The step stress 

gradients at the fillets between the crankpin and the 

cheeks were investigated through the application of 

strain gages. The component was tested until complete 

rupture. The procedure proved to be useful to measure 

the surface residual stress filed induced by nitriding and 

might be applied in many other mechanical applications. 

Bearing in mind these last considerations, the 

designer can choose between first approximations 

theoretical models or more advanced and sophisticated 

numerical procedures in order to reach a good level of 

knowledge of the stress and strain state of the crankshaft 

[27]. No “intermediate” model is available in the 

literature, between the very simple procedure and the 

advanced numerical time expensive one. A theoretical 

model that would prove to be much more effective than 

the simple approximate ones and at the same time would 

not be as time consuming and expensive as the 

numerical based ones, would allow to reach a good 

design level for the crankshaft. Such a design level may 

be enough in many engineering applications in which the 

need is to evaluate the strain-stress state and verify the 

fatigue resistance of the component. Aim of this paper is 

to give the machine designer a powerful theoretical tool 

to allow fast design of crankshafts. The model can be 

implemented in commercial mathematical codes such as 

MATLAB, MATHCAD or EXCEL.  

2. Crankshafts stress state evaluation  

In this paper the theoretical analysis of the stress-strain 

state of crankshafts with two connecting rods is reported. 

A crankshaft with multiple rods is shown in Fig. 1. The 

crankshaft moves two rods put in series one to the other 

in Fig. 2. The crankshaft can be restrained with a 

variable number of pin connections to the frame of the 

alternative pump: this means that the internal forces and 

bending actions of the structure might be more or less 

difficult to calculate according to the number of pin 

connections (isostatic or highly hyperstatic structure). 

The structure of Fig. 2 presents three supports: this 

crankshaft requires a quite high computational time and 

the evaluation of several hyperstatic forces. The two 

connecting rods crankshaft in Fig. 2 represents two 

cranks put on the same plane at 180°.  
 

 

Fig. 1: Crankshaft example with 2 crankpins & 2 connecting rods 

The reduction in the fluctuation of the torque 

generated during the motion of the system in guaranteed 

by the presence of a fly wheel positioned at the right end 

of the component. The crankshaft is restrained in three 

sections by means of bearings that enable to simulate a 

simply supported connection in each of the supported 
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sections of the crankshaft. The supports B and C are 

needed to sustain the crankshaft at the right side of the 

cranks because of the presence of the fly wheel. It was 

assumed that only the cheeks of the crankshaft have 

rectangular cross-sections while the other components of 

the crankshaft have circular cross-section, each with its 

appropriate diameter.  
 

 

Fig. 2: Free body diagram for crankshaft with 2 connecting rods 

and 3 supports 

3. Evaluation of reactions 

The evaluation of the reaction forces at the supports of 

the crankshaft was developed for the structure with two 

connecting rods. The reaction forces at the constraints 

were calculated, as a function of the applied loads. The 

reaction forces were calculated according to the n and t 

directions (Fig. 2). The two connecting rods crankshaft 

presents three bearing supports with six reaction forces  - 

NA, TA, NB, TB, NC, TC - and four acting forces - N1, T1, 

N2, T2 – as shown in Fig. 2. The unknown forces are then 

seven with the resistant torque Mr (Fig. 2). The 

crankshaft has no axial load: no axial equilibrium 

equation along the x axis can be used to calculate the 

hyperstatic forces. This means that the unknown 

quantities are seven and only 5 equilibrium equations 

can be used. The principle of virtual work as below will 

be used to solve the problem and extract all the unknown 

reaction forces:  
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Where x, y and z are respectively the three local 

coordinate axis for each component of the crankshaft; x 

represents the local axial reference for the determination 

of the torque component. The reaction forces in A, B and 

C are the 6 unknown forces to be calculated through the 

principle of virtual work [25]. All the components of the 

crankshaft have been modelled in order to have a 

cylindrical cross section (crankshaft, crankpin) or a 

rectangular one (cheek). The hyperstatic reaction forces 

are the ones applied at point A.  

Two fictitious structures needed for the application 

of the principle of virtual work are shown in Fig. 3 

where a unit force is applied at point A in the n and t 

directions respectively, the directions of each unknown 

hyperstatic reactions at A. The procedure requires 

assigning an appropriate identification number to each 

component of the crankshaft, as shown in Fig. 4, in order 

to properly apply the integration required by the 

principle of virtual work for each component of the 

crankshaft. 

 

Fig. 3: Fictitious structures needed for the application of virtual 

work principle 

The reaction forces in B and C will be calculated as 

a function of the hyper static actions in A, the unknown 

quantities of the problem (refer to Fig. 2 and Fig. 3 and 

Eqns. (2)-(11)).  
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From Eqn. (2) we have: 
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From Eqns. (3) and (4) we have: 
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From Eqns. (5) and (6) we have: 
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The constants k1 to k9 are defined as follows: 
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Fig. 4: Identification of the components of the crankshaft with two 

connecting rods 
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With respect to Fig. 4, the internal actions for 

components 1 to 11 of the real structure are derived 

using in Eqns. (12) to (22) respectively. 
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By applying NA=1 to the first fictitious structure, the 

internal forces for all the components of the crankshaft 

and reactions at supports B and C are calculated using 

Eqns. (23) to (25).  
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From Eqns. (23) and (24) we have: 
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The internal forces for components 1 to 11 of this first 

fictitious structure are reported in Eqns. (26) to (36) 

respectively. 
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0),(1,1 2  xtn MxkMfT               (29) 
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By applying TA=1 to the second fictitious structure, 

the internal forces for all the component of the 

crankshaft will be calculated with a unit force along the t 

direction at restraint A. The reaction forces at restraints 

B and C are calculated as: 
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From Eqns. (37) and (38) we have: 
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The internal forces for components 1 to 11 of this second 

fictitious structure are reported in Eqns. (40)-(50) 

respectively. 
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The equation of the principle of virtual work can be 

written for the first fictitious structure considering that 

the displacement in the n direction at the restrained end 

A is equal to zero as derived in Eqn. (51). 
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Where A, J and Jt and, respectively the area, the inertia 

moment, the torsion inertia moment and the shear factor, 

are different for each of the components of the 

crankshaft. The value of NB from Eqn. (25) in now put 

into Eqn. (51), and an equation with one unknown 

quantity is obtained. Afterwards we integrate Eqn. (51) 

to obtain Eqn. (52). It should be noted that each of the 

component of the crankshaft has its own inertia 

properties.  
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It is possible to summarize Eqn. (52) into Eqn. (53): 

021  nA SMGRNQNPN                (53) 

P, Q, R and S in (53) can be obtained by putting together 

all the terms that respectively multiply NA, N1, N2 and 

MGn in Eqn. (52). The values of P, Q, R and S in Eqn. 

(53) are reported in Eqns. (54)-(57). 
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Now NA can be calculated: 

  ADMGCNBNN nA  21               (58) 

The equation of the principle of virtual work can be 

written for the second fictitious structure considering 

that the displacement in the t direction at the restrained 

end A is equal to zero as derived in Eqn. (59). 
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Where A, J, Jt and, are the area, inertia moment, 

torsion inertia moment and shear factor respectively for 

each of the components of the crankshaft. The value of 

TB from Eqn. (10) is now put into Eqn. (59), and an 

equation with only one unknown quantity is obtained. 

Afterwards we integrate Eqn. (59); bearing in mind that 

each of the component of the crankshaft has its own 

inertia properties as noted in Eqn. (60). 
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It is possible to summarize Eqn. (60) into Eqn. (61): 

021  tA HMGGTFTET                (61) 

The terms E, F, G and H in Eqn. (61), can be obtained 

by putting together all the terms that respectively 

multiply TA, T1, T2, and MGt in Eqn. (60) and are 

reported in Eqns. (62) to (65) respectively. 
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Now TA can be calculated: 

  ADMGCTBTT tA  21                (66) 
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Once the hyperstatic force TA is known, the reaction 

components in the n direction for the supports B and C 

can be calculated by using Eqns. (10) and (11). The 

architecture of implemented theoretical model in 

MATLAB is shown in Fig. 5. 

 
 

 

Fig. 5: Architecture of the theoretical model implemented in MATLAB

4. Validation of theoretical method 

The results of theoretical model were verified through 

the development of a numerical FEM commercial code 

ABAQUS [26]. A sample crankshaft was considered for 

the verification and validation. A 3-D beam model of the 

crankshaft was developed. Each of the components of 

the crankshaft a, b, c, d, e, f and r was divided into ten 

beam elements having linear shape functions. A 

comparison was made between the values of the reaction 

forces and of the internal forces resulting bending, axial, 

shear and torsion actions. These were useful latter for the 

fatigue resistance evaluation of the component. The 

sectional properties assigned. Table 1 lists the geometry 

and principal elastic material properties of the 

crankshaft. Linear elastic analyses were preformed. 

Tables 2 and 3 give the comparison between the 

numerical results and the theoretical ones. All the values 

in Table 3 were obtained by dividing each quantity by 

TA, obtained for the applied load MGt. Negligible 

differences in results were observed between the 

theoretical method and the numerical model. 

Table 1: Geometry and material characteristics  

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2: First fictitious structure results summary 

Reactions Applied load Numeric. Theor. Δ% 

NA 

N1 = 10 kN -20.98 -20.98 0.03 

N2 = 10 kN -6.12 -6.11 0.13 

MGn =10 kN 1.07 1.05 1.42 

NB 

N1 = 10 kN -56.72 -56.76 -0.07 

N2 = 10 kN 77.60 77.65 -0.06 

MGn =10 kN 159.36 159.44 -0.05 

NC 

N1 = 10 kN 34.49 34.52 -0.07 

N2 = 10 kN 40.51 40.54 0.93 

MGn =10 kN -203.64 -203.71 1.93 

Table 3: Second fictitious structure results summary 

Reactions Applied load Numeric. Theor. Δ% 

TA 

T1 = 10 kN -21.95 -21.96 -0.06 

T2 = 10 kN -6.06 -6.06 -0.13 

MGt =10 kN 1.03 1.00 2.47 

TB 

T1 = 10 kN -51.26 -51.17 0.17 

T2 = 10 kN -77.96 -77.90 0.07 

MGt =10 kN 159.59 159.73 -0.09 

TC 

T1 = 10 kN 30.04 29.97 0.24 

T2 = 10 kN 40.87 40.82 0.11 

MGt =10 kN -204.18 -204.29 -0.06 

5. Conclusions 

A theoretical method that allows the designer to 

determine the strain and stressing state for verifying the 

crankshafts in different applications was presented. A 

crankshaft with two connecting rods was considered. 

The virtual work principle was used to assess the 

theoretical formulae useful to extract all the reaction 

forces and the internal actions. A numerical linear beam 

finite element model of the two connecting rod 

crankshaft was developed in order to check the 

correctness of the theoretical model. Theoretical results 

are in good agreement with those from the numerical 

Characteristics Value 

E 206 GPa 

G 80 GPa 

b/a 1.8 

c/a 1.8 

d/a 1.0 

e/a 1.5 

f/a 4.0 

Diameter of the crankshaft 1.5 

Diameter of each crankpin 1.4 

Thickness of each cheek 1.9 

Height of each cheek 0.8 

Torsion factor (for Jt) 0.25 
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model. The presented theoretical procedure can be 

implemented in commercial mathematical software such 

as MATLAB. The procedure developed for crankshafts 

with 2 rods and 3 supports can be extended to as many 

rods and supports as required. After the first step 

dimensioning of the crankshaft, an accurate 3-D finite 

element model of the component can be developed to 

quantify the stress concentration factors and verify the 

fatigue resistance with a better accuracy.  
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