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ABSTRACT: 

The elastic vibrations in carbody affect the safety of suspension components and the riding comfort of high speed trains. 

The vertical vibration of a carbody was studied based on a coupled rigid-flexible dynamic model. The vibration 

characteristics and the transfer relationship under flexible effect were investigated in frequency domain. Analysis 

results show that the symmetrical and non-symmetric mode responses achieve maximum in specific wavelengths. The 

resonance speed and resonance wavelength of the first-order vertical bending vibration have significant impact on the 

operation of the train. When the modal frequencies of the carbody are equal to the natural frequencies, the carbody 

produces modal resonance. Therefore, high first-order bending frequency improves the safety and the riding comfort. 
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1. Introduction 

Speed and comfort are the core competiveness for high-

speed trains when compared with other transports. The 

carbody is increasingly lighter in weight. With the 

increasing train speed, the track excitation frequency is 

increased. This leads to more flexibility and reduces the 

modal frequency. This could cause serious vibrations in 

a frequency range to which passengers aboard train are 

very sensitive, thus affects the ride comfort. This 

vibration also causes carbody fatigue which affects the 

dynamic performance and service life of the vehicle [1-

3]. In order to improve the performance of the vehicle 

vertical dynamics, several methods were already 

proposed. The dynamic vibration absorber and flexible 

damper are installed under carbody and the control 

effects are analyzed by absorber parameters and 

installation style [4-6]. Zeng et al [7] designed 

appropriate constrained damping layers to obtain good 

damping effect. A novel method for vibration reduction 

is the application of an active control system directly to 

the flexible structure of the railway carbody to attenuate 

the elastic vibrations.  

Both passive and active control schemes have 

already been proposed by Huang et al [8]. Above 

research focussed on the factors and measures of 

improvement in ride quality under the elastic body 

structure. The research on the vibration mechanisms and 

transfer relationship under flexibility effect is limited. In 

this paper, a vertical dynamics model for high-speed 

train was established based on rigid-flexible coupled 

dynamics. Resonance effect and filtering effect exist in 

elastic vibrations. The factors influencing vibrations and 

ride comfort are analyzed. 

2. Rigid-flexible coupled dynamics model 

The vertical rigid-flexible coupled dynamics model for 

high speed train is as shown in Fig. 1. The model 

includes carbody, bogie, wheelsets and suspensions. The 

carbody is modelled as a simple Euler-Bernoulli beam in 

consideration of only vertical vibration, i.e., bounce, 

pitching and bending modes. The wheelsets and bogie 

frames are considered as rigid bodies. The pitching 

motion of bogie frame is neglected as it is independent in 

the vehicle vertical system. As a result, the total number 

of independent degrees of freedom of the rigid vehicle 

system is four, namely front frame bounce zb1, rear frame 

bounce zb2, carbody bounce zc3, and carbody pitching c. 

When n flexible modes are considered, the n modal 

coordinate can deem the flexible vibration freedom. So, 

the total degrees of freedom is 4+n. The parameters of 

typical high speed passenger train are shown in Table 1. 
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Fig. 1: Dynamic model of vehicle system 
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Table 1: Parameters of vehicle dynamics model 

Parameter description Symbol Value 

Mass of carbody mc (t) 26 

Carbody pitch inertia Ic (tm
2)  1300 

Mass per meter A (tm-1)  1.07 

Bending rigidity EI (kN/m2) 3.58×106 

Bogie frame mass mb (t) 2.44 

Bogie frame pitch inertia Ib (tm
2) 1.4 

Primary damping coeff. per axle c1 (kNs/m) 30 

Sec. damping coeff. per bogie c2 (kNs/m) 50 

Primary spring coeff. per axle k1 (kN/m) 2400 

Sec. spring coefficient per bogie k2 (kN/m) 380 

Length of carbody L (m) 24.5 

Half of bogie centres Ls (m) 8.75 

1st bending mode frequency f1 10.02 

1st bending mode damping ratio 1 1.5% 

2nd bending mode frequency f2 27.83 

2nd bending mode damping ratio 2 1.5% 

 

When the vertical displacement of carbody being 

expressed as u(x, t), the appropriate partial differential 

equation of the carbody is given by [1], 
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Where xi is the second suspension displace, i=1 means 

front bogie and i=2 means rear one. (x) is the delta 

function. Fi is the forces acted by second suspensions 

and are given by, 

     biibiii ztxukztxucF  ,, 22
   (2) 

It is assumed that the shape function and modal 

coordinate of i
th

 mode are Yi(x) and qi(t) respectively. 

When the rigid modes are included with the flexible 

modes in z(x,t), the first mode of the carbody is chosen 

as the bounce of rigid mode and its shape function is 

taken as Y1(x)=1. The second mode is the pitch and its 

shape function is Y1(x)=L/2-x accordingly under the 

coordinate system definition as in Fig. 1. When N modes 

are considered, the vertical displacement of the carbody 

can be written as, 
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The shape functions are taken as, 
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Where   )2(12 Lii   . By substituting Eqn. (3) into 

Eqn. (1) and integrating along the length of carbody, 

considering the orthogonality of shape functions, the 

carbody and bogies vibration equations are given by, 

;0)2()2(

)]([)]([

;)2()(;)(

;
)()(

2)(

21112111

1121121

2

1

2

1

2
2

1
12

1





 





rrbrrb

bbbb

i
iic

i
ic

c

i

c

i
iiiii

zzzkzzzc

,txuzk,txuzczm

LxFtθIFtzm

F
m

xY
F

m

xY
qωqωξtq








 (5) 

0]2[

]2[

0]2[

]2[

0)2()2(

)],([)],([

4321

43212

2111

21111

43214321

2122222













rrb

rrbbb

rrb

rrbbb

rrbrrb

bbbb

zzbbk

zzbbcI

zzbbk

zzbbcI

zzzkzzzc

txuzktxuzczm















 (5) 

Where  442 2, iiiii IEI  . For the case of, 

   T

Nbbbbcc qqzzzz ......32121     (6) 

Writing Eqns. (5) in matrix form gives 

              rrrr zKzCzKzCzM    (7) 

In which [M], [K] and [C] are the inertia, stiffness, and 

damping matrices respectively. [Cr] and [Kr] are the 

speed input matrices and track displacement. 

According to Eqn. (7), the FRF matrix H(ω), Ha(ω) 

of the carbody displacement and acceleration can be 

obtained by, 
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Matrices obtained by Eqns. (8) are the multiple input 

multiple output (MIMO) displacement and acceleration 

FRF matrices, whose elements are the single input single 

output (SISO) FRFs from the single wheelsets to the 

carbody response, which do not include the time delay 

effect between wheelsets. For the vehicle dynamic model 

in Fig. 1, the track inputs vector is, 
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Where Vb21  ,. VLs22  ,.   VLb s 23 . By 

Fourier transformations, the above equation one has 

       
1

3211 r

Tjjj

r ZeeeZ


     (10) 

Therefore, the system displacement responses in the 

frequency domain are: 
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By assuming, 
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Hc(ω) and Hac(ω) become the displacement and 

acceleration single input multiple outputs (SIMO) FRFs 

from track input to vehicle responses. As these SIMO 

FRFs include time delay effects between wheelsets, they 

are called correlated FRF matrices [10].  

The PSDs of vehicle displacement and acceleration 

responses can be obtained by, 
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In which  

cH ,  T

cH  are the conjugation and simple 

transpose of the FRF matrix Hc(ω). Sω(ω,V) is the 

displacement response PSD matrices at running speed V. 
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3. Flexible carbody vibration analysis 

In carbody rigid and flexible vibration, the shape 

functions can be divided into symmetric and anti-

symmetric modes. The bounce, first bending and third 

bending functions are symmetric modes. The pitch, 

second bending and fourth bending functions are anti-

symmetric modes. The displacement amplitude of FRF 

of symmetric and anti-symmetric modes are given by: 
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For symmetric modes, when the wavelength of track 

irregularity input is, 

)12(4  nb  or )12(4  nLs , n=1,2,3,...     (15) 

then carbody response is zero. The corresponding 

frequencies are: 

  )4(12 bnVf   or   )4(12 sLnVf               (16) 

Similarly, for anti-symmetric modes, the wavelength and 

frequency of carbody response are: 

)12(4  nb  or nLs2 , n=1,2,3,... 

  )4(12 bnVf   or )2( sLVnf  , n=1,2,3,...    (17) 

According to Eqns. (16) and (17), there will be no 

response when   )4(12 bnVf  . Therefore, this is 

called as the filtering phenomenon. For symmetric 

modes, if the wavelengths of track irregularity input is, 

nb2  or nLs2 , n=1,2,3,...                        (18) 

Then there will be maximum carbody responses. These 

are called symmetric resonance wavelengths. In fact, if 

the wheel base of bogie and resonance wavelengths are 

small then the corresponding input energy is also small. 

Therefore, the resonant frequencies are: 

)2( sLnVf  , n=1,2,3,...               (19) 

Similarly, the anti-symmetric modes resonance 

wavelengths and the resonance frequencies are: 

)12(4  nLs ,   sLVnf 412  , n=1,2,3,...   (20) 

The resonance frequencies are related to the length of 

bogie center and speed of the vehicle. When natural 

frequencies are equal to the resonance frequencies, the 

carbody will set up resonance, the corresponding speed 

are called resonance speed [11]. According to Table 1, 

the carbody resonance speeds are shown in Fig. 2. 
 

 

Fig. 2: Carbody resonance speed 

As shown in Fig. 2, the rigid vibration resonance 

speeds are generally less than the vehicle running speed. 

The first vertical bending resonance speed is closer the 

vehicle running speed. It is a significant impact on the 

body vibration. When vehicle parameters are settled, the 

vehicle running speed should avoid the first bending 

resonance speed. The corresponding wavelengths of 

second and higher resonance speed are small and have 

less influence on vehicle. It is considered that first 

bending resonance vibration will be excited when 

bounce vibration transmissibility is maximum. Second 

vertical bending resonance vibration will be excited 

when pitch vibration transmissibility is maximum. The 

carbody will produce the modal resonances as long as 

the natural frequency is consistent with its resonant 

frequency, regardless of the symmetric modes and anti-

symmetric modes. When the symmetric mode response 

is maximum, anti-symmetric mode response is zero and 

vice versa. 

Since the acceleration power spectrum density 

(PSD) is related to the acceleration transmissibility, it is 

necessary to analyze the modal acceleration 

transmissibility. According to parameters in Table 1, the 

modal acceleration transmissibility is shown in Fig. 3. 

When the elastic modal vibration acceleration 

transmissibility is larger than that of rigid and the first 

vertical bending vibration, acceleration transmissibility 

becomes maximum. Therefore, the carbody vibration 

acceleration increase rapidly and ride comfort deteriorate 

when first vertical bending resonance happens. 
 

 

Fig. 3: Modal acceleration transmissibility 

The vibration acceleration is related to track 

irregularities input except for the case of acceleration 

transmissibility. The high and low excitation track 

irregularity PSDs are illustrated in Fig. 4. It can be seen 

that the track excitation power decreases for an increase 

in the frequencies. So, it is important to avoid the low 

resonance frequencies for the carbody vibration. When 

considering the first four carbody modes only, using 

original values for the typical high speed vehicle 

parameters shown in Table 1 and vehicle running speed 

of 265 kmph (anti-symmetric modes resonance speed) 

and 315 kmph (symmetric modes resonance speed), the 

acceleration PSDs at the centre of carbody and above the 

centres of front and rear bogies are shown in Fig. 5. The 

carbody vibration is changed with frequencies and 

positions, each mode has different energy proportion in 

vibration. In 265 kmph speed, the acceleration PSDs are 
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gradually decreased for an increase in the frequency. So 

the elastic vibrations have less power than rigid. Because 

of anti-symmetric effect, the vibration above rear bogie 

is more severe than the center and the front bogie. In 315 

kmph, the acceleration PSD has the same vibration 

energy above the front and rear bogie because it is in the 

node of first bending vibration shape function. The 

center is the peak of first bending vibration shape 

function, the flexible vibration energy is about seven 

times the rigid at the center. The carbody appears to 

show strong elastic resonance. 
 

 

Fig. 4: High speed Track irregularity PSD 

 

Fig. 5(a): V = 265 kmph 

 

Fig. 5(b): V = 315 kmph 

Fig. 5: Vertical vibration acceleration PSD of flexible carbody 

The relationship between the vibration and ride 

quality can be measured by Sperling indices. Fig. 6 

shows that the ride quality indices will increase with the 

increase in vehicle speed. The ride indices at the center 

are changed bigger than that above the bogies because of 

the resonance effect and filtering effect of first vertical 

bending vibration. The first vertical bending mode has 

the greatest influence on the vibration of carbody. The 

relations between the ride quality and the first vertical 

bending frequencies are illustrated in Figs. 7 and 8. Due 

to the filtering and resonance effects, ride indices have a 

drastic change with the first vertical bending frequency. 

It has the peak at resonance frequency and the trough at 

filtering frequency. Higher the vehicle speed the more 

dramatic change to ride quality is observed. When 

bending frequencies get to certain values, the ride 

indices reach to constant values. This value is greater 

when the speed is higher. This means that greater 

carbody stiffness is required for higher vehicle speed. 

Increasing bending frequency means that the mass of 

carbody and energy consumption are increased. For an 

existing vehicle, it is important to avoid the conflict of 

running speed and resonance speed. Because second 

suspension points are the node of first bending mode, it 

has a smaller change of ride indices above the bogies 

than the carbody center. When the first bending 

frequency is less than 8 Hz and vehicle has a high speed, 

the Sperling index has reached about 2.5. 

 

 

Fig. 6: Ride index vs. train speed 
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Fig. 7: Ride index at carbody center vs. Train flexibility 
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Fig. 8: Ride index above bogie center vs. Train flexibility 

It is necessary to take measures to control ride 

quality. Usually, it can be achieved by changing the 

damping ratio of the structure and optimization of 

vehicle suspension parameters. The relationship between 
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evaluated in Fig. 9 when the vehicle speed is 300 kmph. 

Results show that when damping ratio increases from 

0.015 to 0.15 ride index can be decreased by about 13%. 

Increasing the damping ratio can significantly reduce the 

vibration of carbody. The structure surface damping 

layers process, passive or active damping control 

measures can be taken to improve the carbody damping 

[12-14]. Vertical suspension parameters have an 

important influence on ride quality. The vertical stiffness 

is determined by the vehicle structure. So damping 

coefficients change can be taken to improve ride quality. 

Figs. 10 and 11 illustrate the ride quality changes with 

the damping coefficients and speed. Higher primary 

damping reduces the rigid and flexible vibration. Higher 

primary damping may deteriorate the maximum dynamic 

wheel-rail forces. So appropriate damping is helpful to 

improve the ride comfort.  
 

 

Fig. 9: Effect of carbody structural damping on ride index 

 

Fig. 10: Effect of vertical primary damping on ride index 

 

Fig. 11: Effect of vertical secondary damping on ride index 

Secondary damping has an optimal value, higher the 

vehicle speed, smaller the damping is needed. In Fig. 11, 

the optimum values of secondary damping coefficients 

are 20 kNs/m and 15 kNs/m for 200 kmph and 300 kmph 

respectively. It is because when the speed is high, 

excitation frequency is high, secondary vertical damping 

should decrease appropriately to dissipate the vibration. 

4. Conclusions 

The modal vibration has the resonance effect and 

filtering effect, in particular track wavelength, symmetric 

modes vibration is zero and anti-symmetric modes 

vibration is the strongest and vice versa. Each mode has 

its corresponding resonance frequency. First bending 

mode acceleration transmissibility is maximum and has 

the largest contribution to vibration. The first bending 

resonance speed has a dramatic impact on ride indices. 

When this speed is equal to the vehicle speed, the elastic 

resonance happens. So it is necessary to avoid this 

situation. The rigid resonance speed is lower than 

running speed and has a little impact on the ride quality. 

A lower bending frequency can deteriorate the vehicle 

ride quality. So when running speed of a vehicle is 

higher larger the bending frequency is required. 

Improving the primary damping and the structure 

damping appropriately reduces the secondary damping 

and thereby vehicle ride quality can be improved.  
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