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ABSTRACT: 

Conventional vehicle suspension systems, which are passive in nature consists of springs with constant stiffness and 

dampers with constant damping coefficient. These suspension systems cannot meet the characteristics such as ride 

comfort, road handing and suspension deflection during abnormal road conditions simultaneously. Active and semi-

active suspension systems are the solutions to achieve the desired suspension characteristics. Since, active system is 

bulky and requires high energy for working, a semi-active suspension system is considered in the present work to 

analyze vehicle traversing over various road profiles for ride comfort. Mathematical model of a 7 DoF passenger car is 

formulated using Newton’s method. A semi-active suspension system with skyhook linear control strategy avoids the 

road excitations at resonant frequencies by shifting the natural frequencies of the model by varying damping 

coefficients based on the vehicle response for different road conditions where the excitations could be harmonic, 

transient and random. Modal analysis is carried out to identify the un-damped natural frequencies and mode shapes for 
different values of damping. The above analyses are carried out through analytical and numerical methods using 

MATLAB and ANSYS software respectively and the results obtained from both are in good agreement. 
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ACRONYMS AND NOMENCLATURE: 

M, Mi Sprung and Unsprung mass 
KUi, CUi Tire stiffness and damping coeff. 
KSi  Suspension stiff. between sprung & unsprung mass  
CSi  Damping coeff. between sprung and unsprung mass 
X0 Road excitation input 
X Sprung mass bounce 

 Sprung mass roll 

 Sprung mass pitch 

Xi Unsprung mass bounce  
i Subscript referring 1, 2, 3 & 4 

1. Introduction 

Road vehicles experience vibrations while moving, 
mainly due to road surface irregularities, engine 

excitation forces, aerodynamic forces etc. Road induced 

vibrations can be isolated by well-designed suspensions 

systems. Automotive suspensions have been designed to 

satisfy conflicting requirements of better ride comfort, 

road handling and suspensions working space. Better 

ride comfort requires a soft suspension, whereas a stiffer 

suspension is required for a better control of both body 

and wheel as well as to provide adequate working space 

between the chassis and the car body. Due to these 

conflicting demands, the suspension designer has to 

balance the requirements of the ride comfort, road 
handling and suspension working space in different 

measures depending on the type of vehicle like a 

passenger car, truck, off road vehicle etc. 

Automobiles were initially developed as self-

propelled versions of horse-drawn vehicles. However, 
horse-drawn vehicles had been designed for relatively 

slow speeds and their suspension was not well suited for 

higher speeds as per internal combustion engine 

requirements. The first workablespring-suspension 

required advanced metallurgical knowledge and skill, 

and only became possible with the advent of 

industrialization. Obadiah Elliott registered the first 

patent for a spring-suspension vehicle; each wheel had 

two durable steel leaf springs on each side and the body 

of the carriage was fixed directly to the springs attached 

to the axles. Within a decade, most British horse 

carriages were equipped with springs; wooden springs in 
the case of light one-horse vehicles to avoid taxation, 

and steel springs in larger vehicles. These were often 

made of low-carbon steel and usually took the form of 

multiple layer leaf springs. 

A semi-active suspension system is an unusual 

combination of seemingly simple dynamics and 

challenging features (nonlinear behaviour, time-varying 

parameters, asymmetrical control bounds, un-

controllability at steady-state, etc.). These features make 

the design of semi-active control algorithms very 

challenging. This gives opportunity to use the control 
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strategy with an ease to modify significantly the dynamic 

behaviour of the vehicle. The history of semi-active 

suspensions is full of anecdotes about semi-active 

suspensions being rejected by vehicle manufacturers just 

because they “do not make any difference” or even “are 

worse than the (nice, old) traditional mechanical 

suspensions. As in many other electronically controlled 

systems, the actuator is not smart itself. Physical model 

for investigation of vertical dynamics of the suspension 
systems are most commonly built on the quarter car 

model. Quarter car is a 2 DoF system to study the 

characteristics of vehicle suspension system like ride 

comfort and road holding by considering the vertical 

vibration of sprung mass and unsprung mass [1-3]. 

Unsprung mass is linked to the ground with a tire 

modelled by stiffness and to the sprung mass with a 

suspension made up of a linear shock absorber and a 

linear spring [4-6].  

Half car model having 4 DoF is used to study the 

pitching/rolling characteristics of the vehicle suspension 

system along with the bounce of sprung and unsprung 
mass [7-9]. Accuracy of evaluation can also be improved 

compared to quarter car model. Full car model having 7 

DoF is made up with sprung mass in vertical translation 

and its rotation about two horizontal axes and the four 

unsprung masses bounce [10-14]. A full car model gives 

accurate results when investigated for vibration 

response. Pitch, roll and bounce modes of the sprung 

mass may also be analysed simultaneously with the help 

of full-car model, however different control strategies 

may be compared with quarter car model easily [15]. 

Semi-active suspension system consists of spring and 
damper with variable damping coefficient achieved by 

using MR damper, ER damper, variable orifice dampers 

and tuned liquid dampers. Semi-active suspension 

system's main task is to provide a high level of ride 

comfort by isolating the chassis mass from road 

disturbances and to improve road holding by preventing 

the wheel from losing road contact [16-20]. A semi-

active suspension system performs better in improving 

the ride comfort and road handling keeping the 

complexity and cost at minimum [9, 11]. The semi active 

suspension system incorporates a damper that can 
modulate its damping coefficient. Semi-active systems 

are classified as systems where the characteristics can be 

changed rapidly (typically in less than 100 milliseconds).  

The objective of this work is to develop a full car 

model of 7 DoF with semi active suspension system. The 

damped natural frequencies and the corresponding mode 

shapes for various damping values are found using 

analytical and numerical analysis. A comparison is 

drawn between the natural frequencies obtained for 

various damping values as well as between the natural 

frequencies obtained in ANSYS and MATLAB.  

2. Mathematical modelling 

Mathematical model of a 7 DoF passenger car is 

formulated using Newton’s method. The kinematic 

effects due to suspension geometry are ignored i.e. the 
suspensions only provide vertical forces to the chassis. 

The model is formulated using linear conditions. Non-

linear terms are ignored. The vehicle chassis plane is 

considered parallel to the road while usually cars are 

bent over to improve air penetration and reduce aero-

dynamical resistance. For semi-active suspension system 

the hysteresis behaviour of the damper is neglected. In 

the analysis, sprung mass (M) is considered as rigid 

body. A schematic of the mathematical model is shown 

in Fig. 1. Three DoF are assigned to sprung mass i.e. 

bounce, pitch, and roll. Single DoF i.e. bounce is 
assigned to each of the unsprung mass. The bounce for 

sprung mass (M), front right unsprung mass (M2), front 

left unsprung mass (M1), rear right unsprung mass (M3) 

and rear left unsprung mass (M4) are computed using 

Eqns. (1) to (5) respectively. The sprung mass pitch () 

and roll () are computed using Eqns. (6) and (7) 
respectively. 
 

 

Fig. 1: A vertical full-car model with 7-DOF 
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Table 1: Light weight passenger car vehicle parameters 

Parameters (Symbols) Value 

Sprung mass (M) 656 kg 

Mass mom. of inertia for vehicle body (Iy ,Iz) 1000, 500 kg-m2 

C.G distance from front axle (L4) 0.8 m 

C.G distance from rear axle (L5) 1.29 m 

Wheel track(L7 and L8) 0.87 m 

Spring stiff. of front axle susp. (KS1 and KS2) 15000 N/m 

Spring stiff. of rear axle susp. (KS3 and KS4) 8650 N/m 

Damp. coeff. of front axle susp. (CS1 & CS2) 1189 N-s/m 

Damp. coeff. of rear axle susp. (CS3 and CS4) 802 N-s/m 

Stiffness of front tires (KU1, KU2) 150000 N/m 

Stiffness of rear tires (KU3, KU4) 150000 N/m 

Damp. coeff. of front tires (CU1 and CU2) 1500 N-s/m 

Damp. coeff. of rear tires (CU3 and CU4) 1500 N-s/m 

Mass of front axle (M1 and M2) 41 kg 

Mass of rear axle (M3 and M4) 46 kg 

3. Finite element (FE) modelling 

FE modeling of full car is done in ANSYS APDL. 
Sprung mass is assumed as lumped mass in modeling, 

set-1 element is taken as sprung mass and it is connected 

by MPC-184 elements to form a frame as shown in Fig. 

2. Wheels are also modelled as lumped masses by using 

set-2 for front wheels and set-3 for rear wheels. Wheels 

stiffness and damping are also modelled using set-6 for 

both front and rear wheels. Finally, wheels and frame are 

connected by using set-4 and set-5 on front and rear 

wheels respectively. Finally, full car model is modelled 

in ANSYS by following the above steps. 
 

 

Fig. 2: Full-car model developed in ANSYS. 

Table. 2: Real constants values for full-car model 

Set #  Element type Value 

Set-1 MASS-21 
M1 = 656 kg, 

IX= 500 kg-m2, Iy = 1094 kg-m2 

Set-2 MASS-21 MU = 41 kg 

Set-3 MASS-21 MU = 46 kg 

Set-4 COMBIN-14 
K1,K2 = 15000 N/m,  
C1,C2 = 1189 N-s/m 

Set-5 COMBIN-14 
K3,K4 = 15000 N/m,  
C3,C4 = 856 N-s/m 

Set-6 COMBIN-14 
KU = 150000 N/m, 
CU = 1500 N-s/m 

4. Modal analysis  

The first step in dynamic analysis of any system is to 

study its behaviour when it is just disturbed momentarily 

and then left to oscillate freely. The system vibrates at its 

natural frequencies. Natural frequencies and the 

corresponding mode shapes give important information 

about any dynamic system. When subjected to 

excitation, system vibrates at the frequency of excitation. 

The identified natural frequencies of the system help us 

to avoid resonant excitation frequencies by modifying 
the design. Both un-damped and damped modal analysis 

for the full car 7 DoF model is carried out to study the 

dynamic behaviour of the system at various damping 

coefficients. 

4.1. Modal analysis of mathematical model 

When damping is not considered, the equations of 

motion of the 7 DoF vehicle model can be written matrix 

form as, 

0){}]{[  xKxM      (8) 

Where [M] is the mass matrix of size 7×7, [K] the 

stiffness matrix of size 7×7, and {x} is the displacement 

vector of size 7×1. These equations can be rewritten in 

the form of a symmetric Eigen value problem by 

assuming a harmonic response as follows: 

0)]){[][( 2  xMK      (9) 

Where {x} is the displacement amplitude vector of size 

7×1. Solving the above eigenvalue problem, the un-

damped natural frequencies and corresponding mode 

shapes are obtained.  

When damping is considered, the equations of 

motion of the 7 DoF vehicle model can be written as, 

0){}{}]{[  xKxCxM                  (10) 

Where [C] is the damping matrix of size 7×7. These 

equations can be rewritten in the form of a symmetric 

eigenvalue problem by assuming a complex harmonic 
response as follows: 

0}){][][][( 2  XCiMK                 (11) 

Where {x} is the displacement amplitude vector of size 

7×1. Solving the above eigenvalue problem, the damped 

natural frequencies and the corresponding mode shapes 

for different damping coefficients of the full car model 

are found. 

Eigen analysis is carried out for the 7 DoF full car 
model to study the modal parameters like natural 

frequencies and corresponding mode shapes for different 

modes of vibration like pitch, roll and bounce for sprung 

mass and bounce for four unsprung masses. In Fig. 3 

various modes of vibration for full car model may be 

observed. At natural frequency 10.03 Hz it is observed 

that bounce mode corresponding to unsprung masses 1, 2 

are in phase with each other and vibrating with 

amplitude of 0.75 mm. At natural frequency 1.24 Hz 

bounce of sprung mass is occurring with an amplitude of 
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1 mm coupled with slight amplitude for unsprung masses 

bounce vibration due coupling of geometry. At 

frequency 1.02 Hz corresponding to roll mode of 

vibration is occurring with amplitude of 1 mm along 

with slight bounce for unsprung masses. At frequency 

9.64 Hz amplitude of 0.6 mm has occurs for bounce 

mode unsprung mass 3, 4 and there are in phase with 

each other. At frequency 10.03 Hz masses 1, 2 are out 

phase and vibrating with amplitude of bounce is 0.6 mm. 
At natural frequency 9.63 Hz masses 3, 4 are vibrating in 

out-phase with amplitude 0.6 mm. Finally at natural 

frequency 1.14 Hz pitch mode of vibration is observed 

with amplitude of 1 mm along with the unsprung mass 

bounce due to coupling of system pitch should 

accompany by bounce variation in unsprung mass. 
 

 

Fig. 3: Un-damped mode shapes of 7 DoF full-car model 

Damping modal analysis of the 7 DoF full car model 

as shown in Table 1 is carried out by increasing the 

damping coefficient with a step size of 500 N-s/m upto 

2000 N-s/m. In Fig. 4, modal analysis is carried out for 

damping coefficient equal to 500 N-s/m, and modal 
parameters are observed. Natural frequencies are slightly 

shifted by increasing damping coefficients to 500 N-s/m, 

the bounce mode natural frequency of for sprung-mass is 

increased from 1.24 Hz to 1.25 Hz. Natural frequency of 

unsprung mass 2 is decreased to 10.02 Hz from 10.03 

Hz. Natural frequency of unsprung mass 3 is decreased 

from 9.38 Hz to 9.28 Hz. Similarly natural frequency of 

unsprung mass 4 is decreased from 9.34 Hz to 9.33 Hz. 

At natural frequency 1.25 Hz there is a slight decrease in 

amplitude of sprung mass bounce by 0.01 mm when 

compared to un-damped mode of vibration (Fig. 4). 
Similarly, there is slight decrease in amplitudes for four 

unsprung masses bounce and roll. However, there is no 

decrease in amplitude for pitch mode of vibration at 

natural frequency 1.5 Hz. The decrease in amplitude of 

sprung mass bounce is compensated in rolling due to 

normal vehicle coupling. The amplitude of vibration of 

the roll mode for sprung mass remained same that is 1 

mm at natural frequency 0.77 Hz. At frequencies 10.02 

Hz and 9.28 Hz unsprung masses 1, 2 and unsprung 

masses 3, 4 are in phase respectively and at frequencies 

10.02 Hz and 9.33 Hz unsprung masses 1, 2 and 

unsprung masses 3, 4 are out of phase respectively. 
The mode shapes of 7-DoF car model with the 

damping coefficient of 1000 N-s/m are shown in Fig. 5. 

Natural frequency of the bounce of unsprung mass 1 

occurred at 10.00 Hz with amplitude of 0.6 mm (Fig. 5), 

unsprung mass 3 bounce occurred at 9.32 Hz with an 

amplitude 0.7 mm , roll mode of sprung mass occurred at 

0.77 Hz with an amplitude 0.9 mm, bounce of sprung 

mass occurred at 1.26 Hz with an amplitude of 0.9 mm, 

bounce of unsprung mass occurred at 9.89 Hz and 

amplitude of 0.6 mm, bounce of unsprung mass 4 

occurred at 9.09 Hz with an amplitude of 0.6 mm and 

pitch mode of vibration for sprung mass occurred at 1.51 

Hz with an amplitude of 1 mm. 
 

 

Fig. 4: Mode shapes of 7 DoF full-car model at C =500N-s/m 

 

Fig. 5: Mode shapes of 7 DoF full-car model at C =1000N-s/m 

Modal analysis is carried out for damping 

coefficient of C=1500 N-s/m and 7 modes of vibration of 

7 DoF are shown in Fig. 6. It can also be observed that 

the bounce of unsprung mass 1 occurred at natural 

frequency at 9.96 Hz with an amplitude of 0.7 mm 

bounce of unsprung mass 3 is observed at 8.618 Hz and 

amplitude -0.7 mm, bounce of sprung mass occurred at 

1.32 Hz and amplitude of 0.9mm, roll of sprung mass 

occurred at 0.77 Hz and amplitude of 0.9 Hz, bounce of 
unsprung mass2 occurred at 9.28 Hz and amplitude 0.6 

mm, bounce of unsprung mass 4 occurred at 9.28 Hz and 

amplitude 0.6 mm, pitch of sprung mass occurred at 1.59 

Hz and amplitude of 1mm.  
 

 

Fig. 6: Mode shapes of 7 DoF full-car model at C =1500 N-s/m 
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Modal analysis is carried out for damping 

coefficient C=2000 N-s/m and is as shown in Fig. 7. It is 

observed that modal shapes for bounce, pitch, roll of 

sprung mass occurred at 1.37 Hz,  1.59 Hz and 0.78 Hz 

with an amplitudes of 0.9 mm, 1 mm, and  -0.6 mm 

respectively and bounce of unsprung masses 1, 2, 3 and 

4 occurred at 9.88 Hz, 9.29 Hz, 9.24 Hz and 7.45 Hz 

with amplitudes 0.6 mm, 0.6 mm, -0.66 mm and 0.66 

mm respectively. Natural frequencies and mode shape 
amplitudes thus obtained for various damping 

coefficients are shown in Table 3. 
 

 

Fig. 7: Mode shapes of 7 DOF full-car model at C =2000 N-s/m 

Table 3: Natural frequencies of the 7 DoF full car model for 

various damping coefficients in MATLAB 

Modes  

Frequency in Hz for various 
damping coeff. C [N s/m] 

0 500 1000 1500 2000 

Sprung mass roll 0.76 0.77 0.77 0.77 0.78 

Sprung mass bounce 1.24 1.25 1.28 0.80 1.37 

Sprung mass pitch 1.50 1.50 1.51 1.59 1.59 

Unsprung mass 1 bounce 10.03 10.03 9.89 9.67 9.29 

Unsprung mass 2 bounce 10.03 10.02 10.00 9.96 9.88 

Unsprung mass 3 bounce 9.35 9.28 9.09 8.61 7.45 

Unsprung mass 4 bounce 9.34 9.33 9.32 9.28 9.24 
 

4.2. Modal analysis of FE model 

Block Lanczos method is adopted for the un-damped 

modal analysis of the full car model based on the above 

description of the method. QR-Damped method is 

adopted for study of damped modal parameters of the 7 

DoF full car model in ANSYS as shown in Fig. 2. This 
method is used to find out the damped natural 

frequencies and corresponding mode shapes for different 

values of damping coefficients. Since, the system is 

having 7 DoF therefore full car model will have 7 modes 

of vibration namely bounce, pitch and roll for sprung 

mass and bounces for 4 unsprung masses. Modal 

analysis is performed for 7 DoF full car model for the 

study of the modal parameters both for un-damped 

system and damped system for various damping 

coefficients ranging from 500-2000 N-s/m. From un-

damped modal analysis of the full car, the mode shapes 
obtained are shown in Fig. 8. Mode shapes for bounce, 

pitch, roll of sprung mass occurred at 1.37 Hz, 1.59 Hz 

and 0.78 Hz with amplitudes of 0.9 mm, 1mm and -0.6 

mm respectively. Bounce mode of unsprung masses 1, 2, 

3, and 4 occurred at 9.88 Hz, 9.29 Hz, 9.24 Hz and 7.45 

Hz with amplitudes 0.6 mm, 0.6 mm, -0.66 mm and 0.66 

mm respectively. 

 

Fig. 8: Un-damped mode shapes of 7 DoF full-car model 

The mode shapes for C=500 N-s/m are shown in 

Fig. 9. Mode shapes for bounce, pitch and roll of sprung 

mass occurred at 1.18 Hz, 1.57 Hz and 0.74 Hz with 

amplitudes of 0.9 mm, 1 mm and -0.6 mm respectively. 

The bounce mode of unsprung masses 1, 2, 3 and 4 
occurred at 9.81 Hz, 9.81 Hz, 9.16 Hz and 9.16 Hz with 

amplitudes 0.15 mm, 0.15 mm, -0.15 mm and 0.15 mm 

respectively. With increase in damping, the mode shape 

corresponding to bounce is associated with rolling of the 

sprung mass due to coupling the system. The mode 

shapes for C = 1000 N-s/m are shown in Fig. 10. Mode 

shapes for bounce, pitch, roll of sprung mass occurred at 

1.17 Hz, 1.47 Hz and 0.73 Hz with amplitudes of 0.03 

mm, 0.05 mm and 0.06 mm respectively. Bounce modes 

of unsprung masses 1, 2, 3 and 4 occurred at 8.62 Hz, 

8.62 Hz, 8.09 Hz and 8.17 Hz with amplitudes of 0.6 
mm, 0.6 mm, -0.66 mm and 0.66 mm respectively. 
 

 

Fig. 9: Mode shapes of 7 DoF full-car model at d C =500 N-s/m 
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Fig. 10: Mode shapes of 7 DoF full-car at C = 1000 N-s/m 

Mode shapes at C = 1500 N-s/m are shown in Fig. 

11. Mode shapes for bounce, pitch and roll of sprung 

mass occurred at 1.06 Hz, 1.23 Hz and 0.72 Hz with 

amplitudes of 0.05 mm 0.06 and -0.03 mm respectively. 

Bounce modes of unsprung masses 1, 2, 3, 4 occurred at 

7.9 Hz, 7.86 Hz, 7.1 Hz, and 7.4 Hz with amplitudes of 

0.15 mm, 0.15 mm, -0.14 mm and 0.14 mm respectively. 

With increase in damping rolling vibrations are reduced 

due to increase in amplitude of car bounce. 
 

 

Fig. 11: Mode shapes of 7 DoF full-car at C = 1500 N-s/m 

Mode shapes are obtained along with their natural 

frequencies for C = 2000 N-s/m which are shown as in 

Fig. 12. Mode shapes for bounce, pitch, roll of sprung 

mass occurred at 0.9 Hz, 1.23 Hz and 0.707 Hz with 

amplitudes of 0.04 mm, 0.06 mm, and 0.03 mm 

respectively. Bounce modes of unsprung masses 1, 2, 3, 

and 4 occurred at 6.73 Hz, 6.73 Hz, 6.4 Hz and 6.4 Hz 

with amplitudes of 0.14 mm, 0.14 mm, 0.13 mm and 

0.13 mm respectively. With increase in damping 
coefficient pitching is associated with increase in 

amplitude of bounce for unsprung mass. A summary of 

the natural frequencies obtained in ANSYS are shown in 

Table 4. A comparison is drawn between the un-damped 

natural frequencies of the 7 DoF full car models that are 

obtained in MATLAB and ANSYS is given in Table 5. 
 

 

Fig. 12: Mode shapes of 7 DoF full-car at C = 2000 N-s/m 

Table 4: Natural frequencies of the 7 DoF full car model for 

various damping coefficients in ANSYS 

Modes  

Frequency in Hz for various 
damping coeff. C [N s/m] 

0 500 1000 1500 2000 

Sprung mass roll 0.76 0.74 0.73 0.72 0.77 

Sprung mass bounce 1.24 1.18 1.14 1.06 0.9 

Sprung mass pitch 1.55 1.57 1.47 1.23 1.23 

Unsprung mass 1 bounce 10.03 9.81 8.66 7.11 6.73 

Unsprung mass 2 bounce 10.03 9.81 8.62 7.9 6.73 

Unsprung mass 3 bounce 9.34 9.16 8.17 7.86 6.4 

Unsprung mass 4 bounce 9.34 9.16 8.09 7.4 6.4 

Table 5: Un-damped natural frequencies of 7 DoF full-car model 

Mode of vibration 
Modal analysis 

MATLAB ANSYS 

Rolling 0.86 0.769 

Car Bounce 1.24 1.2408 

Pitching 1.45 1.5101 

Wheel-1 bounce 10.03 10.037 

Wheel-2 bounce 10.03 10.037 

Wheel-3 bounce 9.35 9.3531 

Wheel-4 bounce 9.35 9.3531 



Palli et al. 2017. Int. J. Vehicle Structures & Systems, 9(1), 57-63 

63 

5. Conclusions 

Un-damped and damped natural frequencies and the 

corresponding mode shapes for the 7 DoF full car model 

have been found from equations of motion and finite 

element method. The natural frequencies thus found by 

both the methods are in good agreement. The following 

are conclusions drawn from modal analysis of 7 DoF full 

car model. From un-damped modal analysis, mode shape 

of bounce of the sprung mass is associated with roll of 

the sprung mass due to the coupling of the system. 
Pitching of the sprung mass is independent of the roll 

and bounce of the sprung mass. From damped modal 

analysis, it is observed that natural frequencies of the full 

car model are shifting which will help us in avoiding the 

resonance of the system with road excitation during 

active/semi-active suspension systems. 
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