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ABSTRACT: 

Spatial Air Index (SAI) has been proposed for improving query performance of k-nearest neighbour queries in road 

networks. SAI has been effectively utilized the usage of Adaptive Cooperative Caching (ACC) and reduced search 

space. Experiments have been conducted for evaluated query result, the experimental result show that SAI outperform 

compared to state-of-the-art Network Partition Index (NPI). 
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1. Introduction 

Wireless broadcast is one of the efficient strategies for 

disseminating data to clients in road networks and 

improves scalability and security. Wireless broadcast 

strategies have been classified into three categories and 

these are push-based, pull-based and hybrid scheduling 

strategies [1-3]. However, these strategies have been 

suffered from sequential data access. In Euclidian space, 

various scheduling strategies have been adapted for 

processing queries [4-5]. However, in real-time 

applications, query processing in road networks is 

essential. Air index has been adapted recently for 

shortest path queries in road networks. However, it 
doesn’t address range queries and k-nearest neighbour 

queries and continues k-nearest neighbour queries [6]. 

Recently, NPI has been adapted for various spatial 

queries in road networks using wireless broadcast 

environment, but it doesn’t address cache management 

and well scheduling strategy [7]. Motivated by this 

observation, SAI is proposed for spatial queries in road 

networks.  

The original road networks may contain various data 

objects such as restaurants, shopping-malls, hospitals, 

gas-stations and schools, and these are classified into 
general and specific based on client’s requirement, and 

then compute cut-off point [8]. Using grid partition 

strategy, original road network partitioned into small 

grid cells, and pre-computed general information such as 

diameter of each cell and minimum/maximum network 

distance between every pair of cells that will be carried 

by SAI. On server site, server broadcast general and 

specific data objects of SAI with network connectivity 

information of each cell using Hybrid Broadcast (HB) 

scheduling. On client site, we proposed Adaptive 

Cooperative Caching (ACC). In ACC, once a client 

receives a query request from a mobile user then it 

search query result in its cache, if found then it return 

query result. If not found, then the client send request 

query to region QD. If region QD doesn’t contain query 

result then it request to nearest regions QDs in network. 
If none of the region QD’s doesn’t respond then the 

client tune into channel, retrieves required information 

and process the query using Dijkstra’s shortest path 

algorithm. If required data doesn’t broadcast while 

tuning, then the client send request query to server via 

pull-based scheduling. While broadcasting, if any free 

time-slots exist then server broadcast the client requested 

data objects (i.e., specific data objects) along with 

general data objects of SAI based on longest waiting 

time and priority order, and updates optimal cut-off 

point. In this paper, SAI is proposed for k-nearest 
neighbour queries in road networks. K-nearest neighbour 

query algorithm is proposed at client site. Experiments 

have been conducted to compare the performance of SAI 

with state-of-the-art NPI. 

2. Data broadcast via wireless channel 

using SAI 

The original road networks may contain large number of 

data objects and these are classified into general and 
specific, and compute cut-off point. Using grid partition 

strategy, original road networks is partitioning into small 

grid cells and pre-computes the diameter of each cell and 

minimum/maximum network distance between every 

pair of cells, and then form NPI called SAI. At server 

site, server broadcast SAI with data segment on wireless 

channel using HB scheduling. At client site process the 

query based on ACC. ACC strategy consider both spatial 

and temporal property of data objects when making 
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cache replacement decisions based on client moment 

prediction and improves performance. In wireless mobile 

environment cache management play an important role 

and improves query performance. Cache management 

strategies have been considering either spatial or 

temporal property of data objects when making cache 

replacement decisions [9 - 14]. In order to improve query 

performance we consider both spatial and temporal 

property of data objects when making cache replacement 
decisions. 

3. K-nearest neighbour query processing 

using SAI 

K-Nearest Neighbour (k-NN) Query is defined as the 

client retrieves k-nearest data objects from a query point 

q. Like a range query, range is not fixed in k-nearest 

neighbour query hence it will be depend on the value of 

k and location of query point q. In order to find 
candidate cells, initially estimate the network distance 

dmax based on SAI. Once dmax is estimated then k-nearest 

neighbour query is converted into range query and 

retrieves candidate’s data objects within a network 

distance dmax from the query point q. The dmax is 

estimated based on the upper bounds of network distance 

between any object in Cu and Cv and it is denoted as UB 

(Cu, Cv). Lemma: Given two cells Cu and Cv, the network 

distance between any object u in Cu and any object v in 

Cv is bounded by (diameter (Cu) + diameter (Cv) + βu,v) 

and it is desnoted as UB (Cu, Cv) ≤ diameter (Cu) + 
diameter (Cv) + βu,v. Based on above lemma, dmax is 

estimated as follows. For example, if the query point q is 

located in cell Cq then access Ci based on non-

descending order of αq,i (i.e., Ci is visited earlier than Cj 

if αq,I < αq,j is tie, and UB (Cq, Ci) and UB (Cq, Cj) are 

adapted for tie-breaker). 
 

 

Fig. 1: Processing of k-NN query using ACC 

Finally, the smaller UB value will be visited first. In 

this process, two parameters such count and UB (dmax) 

are used to finding k-nearest data objects. In which, 

count denotes the total number of data objects in all the 

cells visited so far, and UB (dmax) denotes for each 

visited cell Ci. For processing k-nearest neighbour query, 

initially compute UB (Cq, Ci) and set UB (dmax) to the 

maximum UB (Cq, Ci) found so far, and mean while 
check the value of |Ci|, and update count. This process is 

continuing until count reaches to value k. In this 

simulation, assume that the clients’ locations are located 

at network nodes and easily extend to support cases 

where clients locations are locating along the network 

edges as shown in Fig. 1, and used Dijkstra’s shortest 

path algorithm because it is simple and efficient for 

small sub-graphs. 
 

Procedure kNN _query(q, k, S); 

Input: q - query point, k – an integer, S - data set 

Output: valid k nearest data objects from query point q   

%  receive_query( ) – a client waits for receiving a 

query from mobile user, t – time, Cq– valid grid cells 

from a query point q, Rq– valid range query result from a 

query point q, αq,i – minimum or maximum network 
distance from a query point q, Q – queue, Canq – 

candidates cells from a query point q % 

begin 

1:  data set S divided into general and specific data sets; 

2: compute a cut-off point cp; 

3: query = receive_query( ); 

4: if query results found at client/region QD cache then 

5:    return result; 

6: else 

7:     for each other region QD do 

8:     if query result found at any region QD's cache then 
9:           return result; 

10:        else 

11:           Listen_channel( ); 

12:       end if 

13:    end for 

14: end if 

15: end  
 

1: Procedure Listen_channel( ); 

2: begin 

3: wait t seconds for required data; 

4:  if a client required data doesn't broadcast then 

5:       client send query to server; 

6:       for each available time slot do 

7:           if empty slot exist then 

8:           select specific data objects based on waiting 

time & priority; 
9:           end if 

10:       end for 

11:      update cut_off point cp; 

12: else if required data is received from the server then 

13:            Q = 0, count = 0, UB(dmax) = 0; 

14:            SAIHeader = retriveIndexHeader( ); 

15:              find out grid cells Cq containing query q; 

16:         read the qth row Rq corresponds to Cq in matrix; 

17:              sort the cells Ci based on non-descending 

order of α,q,i and maintained in Q; 

18:              while Q is not empty do 
19:                        Ci = Q.pop(); 

20:                        count =count + |Ci| ; 

21:         UB(dmax) = MAX(UB(dmax),UB(Cq,Ci)); 

22:               end while 

23:                      if count > = k then break; 

24:       (subGraph, Canq) = rangeQuery(q, UB(dmax), S); 

25:            return Dijkstra(subGraph, Canq, q, k); 

26:                      end if 

27: end if 

27: end 
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Assume that the client is located at node v5 and request 

k-nearest neighbour query to find four nearest neighbour 

restaurants from a query point q. Then the k - nearest 

neighbour query result is O1, O2, O3 and O4. 

4. Performance evaluations 

Experiments have been conducted for evaluating query 

performance using ns-2 simulator with window 7 

platform, 2.33G Intel Core 2 CPU and 3.2 GB RAM. 

4.1. Experimental setup 

In this simulation, real road networks data set namely 

Oldenburg (OL) and California (CAL) have been 

considered. The OL contains 6,105 nodes and 7,035 

edges, and CAL contains 21,048 nodes and 21,693 edges 

[15] respectively. The evolution is run on simulator 

which contains server, broadcast channel and clients. For 

simulating results, 100 clients and 500 random queries 

are used. In this work, we considered 1) size of data 

object is fixed at 128 bytes; 2) a set of data objects are 

randomly generated and uniformly distributed; 3) query 
issuing points are always at the network nodes; 4) 

network bandwidth is dynamic; 5) tuning time and 

access latency are measured in terms of number of bytes 

of data transfer in a wireless channel. 

4.2. Cycle length 

In this simulation, cycle length plays an important 

because it is directly impacts on the access latency. The 

original road network is partitioning into 2i × 2i uniform 

grid cells, where i vary from 0 to 4, (i.e., the number of 
grids ranges from 1, to 4, to 16, to 64, and to 256). The 

number of grid cells in a network is set to 4i and then 

mapped into Hilbert curve order. The server 

disseminates data using (1, m) strategy by setting 

optimal m value 3. In this work, the performance of SAI 

compared with state-of-the-art NPI based on grid sizes 

such as 42, 43, and 44 respectively, and these are 

denoted as SAI/NPI-16, SAI/NPI-64 and SAI/NPI-256. 

The parameter settings and broadcast cycle length are 

shown in Table 1 and Table 2 respectively. 

Table 1: Parameter settings 

Parameter Values 

K 1, 5, 10, 15 

Query scope (d/DN) 0.01, 0.05, 0.1, 0.2 

Object density (|S|/|V|) 0.01, 0.05, 0.1, 0.2 

Number of cells (N) 16, 64, 256 

Table 2: Broadcast cycle length 

Method 
Index size 

(byte) 
Data size 

(byte) 

Cycle 
Length 
(byte) 

SAI/NPI-16 2196 367764 389724 

SAI/NPI-64 33300 367764 700764 

SAI/NPI-256 526356 367764 5631324 
 

4.3. K-NN query 

In this simulation, an object density is fixed at 0.1 and k 

values are varied from 1, to 5, to 10, to 15. By observing 

tuning time, SAI-256 has better tuning time compared to 

state-of-the-art NPI-256 because it used both cached data 

at clients and pre-computation information of SAI. For 

the k - NN queries with k > 1, tuning time of SAI has 

been increase as k becomes larger because the upper 

bound of the distance between the query point and kth 

NN is enlarged by k, so the clients would process the 

range query with larger radius. However, even under a 

relatively large k, the tuning time of SAI is still smaller 

compared to state-of-the-art NPI. By observing access 

latency, SAI-16 has outperformed due to smaller index 

size. Similarly, SAI-64 also has better performance 
compared to state-of-the-art NPI-64. However, SAI-256 

has energy efficient, but it suffers from large access 

latency due to larger index size as shown in Fig. 2. For 

evaluating the performance of different index with 

various object densities, assume that the number of grid 

cells is fixed at 64 for both SAI and state-of-the-art NPI 

because it simplifies the comparison as shown in Fig. 3. 

The performance of SAI-64 has more stable to the 

variation of the object density compared to state-of-the-

art NPI-64 because SAI enables the clients to check the 

number of objects in each grid cells and to calculate the 

upper bound of the distance of the k
th 

NN with help of 
cached data at clients. When the object density becomes 

denser, then the upper bound decreases so resulting 

clients reduce unnecessary grid cells. 
 

 

Fig. 2: Performance of k - NN queries with k value using ACC 

 

Fig. 3: Performance of 10 NN queries with various object densities 

using ACC 
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5. Conclusion 

K-nearest neighbour query processing in wireless 

environments has been challenging issue due to limited 

resources such limited bandwidth, low energy and 

mobility. In this work, SAI has been utilized the 

advantage of cached data at client site and improved 

query performance. The experimental result has been 

showing that performance of SAI better than state-of-

the-art NPI. In future, we can extent this work by 

adapting advanced caching strategies and spatial queries. 
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