
Veeresha et al. 2017. Int. J. Vehicle Structures & Systems, 9(2), 87-90

Internat ional Journal of

Vehicle Structures & Systems
Available online at www.maftree.org/eja

ISSN: 0975-3060 (Print), 0975-3540 (Online)

doi: 10.4273/ijvss.9.2.05

© 2017. MechAero Foundation for Technical Research & Education Excellence

87

Processing of K-Nearest Neighbour Queries in Road Networks using Spatial Air

Index

M. Veeresha
a
 and M. Sugumaran

b

Dept. of Computer Sci. and Engg.,
Pondicherry Engg. College, Pondicherry, India
aCorresponding Author, Email: veeresha.m@pec.edu
bEmail: sugu@pec.edu

ABSTRACT:

Spatial Air Index (SAI) has been proposed for improving query performance of k-nearest neighbour queries in road

networks. SAI has been effectively utilized the usage of Adaptive Cooperative Caching (ACC) and reduced search

space. Experiments have been conducted for evaluated query result, the experimental result show that SAI outperform

compared to state-of-the-art Network Partition Index (NPI).

KEYWORDS:

Spatial air index; K-nearest neighbour queries; Adaptive cooperative caching; Network partition index; Road networks

CITATION:

M. Veeresha and M. Sugumaran. 2017. Processing of K-Nearest Neighbour Queries in Road Networks using Spatial

Air Index, Int. J. Vehicle Structures & Systems, 9(1), 87-90. doi:10.4273/ijvss.9.2.05.

1. Introduction

Wireless broadcast is one of the efficient strategies for

disseminating data to clients in road networks and

improves scalability and security. Wireless broadcast

strategies have been classified into three categories and

these are push-based, pull-based and hybrid scheduling

strategies [1-3]. However, these strategies have been

suffered from sequential data access. In Euclidian space,

various scheduling strategies have been adapted for

processing queries [4-5]. However, in real-time

applications, query processing in road networks is

essential. Air index has been adapted recently for

shortest path queries in road networks. However, it
doesn’t address range queries and k-nearest neighbour

queries and continues k-nearest neighbour queries [6].

Recently, NPI has been adapted for various spatial

queries in road networks using wireless broadcast

environment, but it doesn’t address cache management

and well scheduling strategy [7]. Motivated by this

observation, SAI is proposed for spatial queries in road

networks.

The original road networks may contain various data

objects such as restaurants, shopping-malls, hospitals,

gas-stations and schools, and these are classified into
general and specific based on client’s requirement, and

then compute cut-off point [8]. Using grid partition

strategy, original road network partitioned into small

grid cells, and pre-computed general information such as

diameter of each cell and minimum/maximum network

distance between every pair of cells that will be carried

by SAI. On server site, server broadcast general and

specific data objects of SAI with network connectivity

information of each cell using Hybrid Broadcast (HB)

scheduling. On client site, we proposed Adaptive

Cooperative Caching (ACC). In ACC, once a client

receives a query request from a mobile user then it

search query result in its cache, if found then it return

query result. If not found, then the client send request

query to region QD. If region QD doesn’t contain query

result then it request to nearest regions QDs in network.
If none of the region QD’s doesn’t respond then the

client tune into channel, retrieves required information

and process the query using Dijkstra’s shortest path

algorithm. If required data doesn’t broadcast while

tuning, then the client send request query to server via

pull-based scheduling. While broadcasting, if any free

time-slots exist then server broadcast the client requested

data objects (i.e., specific data objects) along with

general data objects of SAI based on longest waiting

time and priority order, and updates optimal cut-off

point. In this paper, SAI is proposed for k-nearest
neighbour queries in road networks. K-nearest neighbour

query algorithm is proposed at client site. Experiments

have been conducted to compare the performance of SAI

with state-of-the-art NPI.

2. Data broadcast via wireless channel

using SAI

The original road networks may contain large number of

data objects and these are classified into general and
specific, and compute cut-off point. Using grid partition

strategy, original road networks is partitioning into small

grid cells and pre-computes the diameter of each cell and

minimum/maximum network distance between every

pair of cells, and then form NPI called SAI. At server

site, server broadcast SAI with data segment on wireless

channel using HB scheduling. At client site process the

query based on ACC. ACC strategy consider both spatial

and temporal property of data objects when making

mailto:veeresha.m@pec.edu
http://dx.doi.org/10.4273/ijvss.9.2.05

Veeresha et al. 2017. Int. J. Vehicle Structures & Systems, 9(2), 87-90

88

cache replacement decisions based on client moment

prediction and improves performance. In wireless mobile

environment cache management play an important role

and improves query performance. Cache management

strategies have been considering either spatial or

temporal property of data objects when making cache

replacement decisions [9 - 14]. In order to improve query

performance we consider both spatial and temporal

property of data objects when making cache replacement
decisions.

3. K-nearest neighbour query processing

using SAI

K-Nearest Neighbour (k-NN) Query is defined as the

client retrieves k-nearest data objects from a query point

q. Like a range query, range is not fixed in k-nearest

neighbour query hence it will be depend on the value of

k and location of query point q. In order to find
candidate cells, initially estimate the network distance

dmax based on SAI. Once dmax is estimated then k-nearest

neighbour query is converted into range query and

retrieves candidate’s data objects within a network

distance dmax from the query point q. The dmax is

estimated based on the upper bounds of network distance

between any object in Cu and Cv and it is denoted as UB

(Cu, Cv). Lemma: Given two cells Cu and Cv, the network

distance between any object u in Cu and any object v in

Cv is bounded by (diameter (Cu) + diameter (Cv) + βu,v)

and it is desnoted as UB (Cu, Cv) ≤ diameter (Cu) +
diameter (Cv) + βu,v. Based on above lemma, dmax is

estimated as follows. For example, if the query point q is

located in cell Cq then access Ci based on non-

descending order of αq,i (i.e., Ci is visited earlier than Cj

if αq,I < αq,j is tie, and UB (Cq, Ci) and UB (Cq, Cj) are

adapted for tie-breaker).

Fig. 1: Processing of k-NN query using ACC

Finally, the smaller UB value will be visited first. In

this process, two parameters such count and UB (dmax)

are used to finding k-nearest data objects. In which,

count denotes the total number of data objects in all the

cells visited so far, and UB (dmax) denotes for each

visited cell Ci. For processing k-nearest neighbour query,

initially compute UB (Cq, Ci) and set UB (dmax) to the

maximum UB (Cq, Ci) found so far, and mean while
check the value of |Ci|, and update count. This process is

continuing until count reaches to value k. In this

simulation, assume that the clients’ locations are located

at network nodes and easily extend to support cases

where clients locations are locating along the network

edges as shown in Fig. 1, and used Dijkstra’s shortest

path algorithm because it is simple and efficient for

small sub-graphs.

Procedure kNN _query(q, k, S);

Input: q - query point, k – an integer, S - data set

Output: valid k nearest data objects from query point q

% receive_query() – a client waits for receiving a

query from mobile user, t – time, Cq– valid grid cells

from a query point q, Rq– valid range query result from a

query point q, αq,i – minimum or maximum network
distance from a query point q, Q – queue, Canq –

candidates cells from a query point q %

begin

1: data set S divided into general and specific data sets;

2: compute a cut-off point cp;

3: query = receive_query();

4: if query results found at client/region QD cache then

5: return result;

6: else

7: for each other region QD do

8: if query result found at any region QD's cache then
9: return result;

10: else

11: Listen_channel();

12: end if

13: end for

14: end if

15: end

1: Procedure Listen_channel();

2: begin

3: wait t seconds for required data;

4: if a client required data doesn't broadcast then

5: client send query to server;

6: for each available time slot do

7: if empty slot exist then

8: select specific data objects based on waiting

time & priority;
9: end if

10: end for

11: update cut_off point cp;

12: else if required data is received from the server then

13: Q = 0, count = 0, UB(dmax) = 0;

14: SAIHeader = retriveIndexHeader();

15: find out grid cells Cq containing query q;

16: read the qth row Rq corresponds to Cq in matrix;

17: sort the cells Ci based on non-descending

order of α,q,i and maintained in Q;

18: while Q is not empty do
19: Ci = Q.pop();

20: count =count + |Ci| ;

21: UB(dmax) = MAX(UB(dmax),UB(Cq,Ci));

22: end while

23: if count > = k then break;

24: (subGraph, Canq) = rangeQuery(q, UB(dmax), S);

25: return Dijkstra(subGraph, Canq, q, k);

26: end if

27: end if

27: end

Veeresha et al. 2017. Int. J. Vehicle Structures & Systems, 9(2), 87-90

89

Assume that the client is located at node v5 and request

k-nearest neighbour query to find four nearest neighbour

restaurants from a query point q. Then the k - nearest

neighbour query result is O1, O2, O3 and O4.

4. Performance evaluations

Experiments have been conducted for evaluating query

performance using ns-2 simulator with window 7

platform, 2.33G Intel Core 2 CPU and 3.2 GB RAM.

4.1. Experimental setup

In this simulation, real road networks data set namely

Oldenburg (OL) and California (CAL) have been

considered. The OL contains 6,105 nodes and 7,035

edges, and CAL contains 21,048 nodes and 21,693 edges

[15] respectively. The evolution is run on simulator

which contains server, broadcast channel and clients. For

simulating results, 100 clients and 500 random queries

are used. In this work, we considered 1) size of data

object is fixed at 128 bytes; 2) a set of data objects are

randomly generated and uniformly distributed; 3) query
issuing points are always at the network nodes; 4)

network bandwidth is dynamic; 5) tuning time and

access latency are measured in terms of number of bytes

of data transfer in a wireless channel.

4.2. Cycle length

In this simulation, cycle length plays an important

because it is directly impacts on the access latency. The

original road network is partitioning into 2i × 2i uniform

grid cells, where i vary from 0 to 4, (i.e., the number of
grids ranges from 1, to 4, to 16, to 64, and to 256). The

number of grid cells in a network is set to 4i and then

mapped into Hilbert curve order. The server

disseminates data using (1, m) strategy by setting

optimal m value 3. In this work, the performance of SAI

compared with state-of-the-art NPI based on grid sizes

such as 42, 43, and 44 respectively, and these are

denoted as SAI/NPI-16, SAI/NPI-64 and SAI/NPI-256.

The parameter settings and broadcast cycle length are

shown in Table 1 and Table 2 respectively.

Table 1: Parameter settings

Parameter Values

K 1, 5, 10, 15

Query scope (d/DN) 0.01, 0.05, 0.1, 0.2

Object density (|S|/|V|) 0.01, 0.05, 0.1, 0.2

Number of cells (N) 16, 64, 256

Table 2: Broadcast cycle length

Method
Index size

(byte)
Data size

(byte)

Cycle
Length
(byte)

SAI/NPI-16 2196 367764 389724

SAI/NPI-64 33300 367764 700764

SAI/NPI-256 526356 367764 5631324

4.3. K-NN query

In this simulation, an object density is fixed at 0.1 and k

values are varied from 1, to 5, to 10, to 15. By observing

tuning time, SAI-256 has better tuning time compared to

state-of-the-art NPI-256 because it used both cached data

at clients and pre-computation information of SAI. For

the k - NN queries with k > 1, tuning time of SAI has

been increase as k becomes larger because the upper

bound of the distance between the query point and kth

NN is enlarged by k, so the clients would process the

range query with larger radius. However, even under a

relatively large k, the tuning time of SAI is still smaller

compared to state-of-the-art NPI. By observing access

latency, SAI-16 has outperformed due to smaller index

size. Similarly, SAI-64 also has better performance
compared to state-of-the-art NPI-64. However, SAI-256

has energy efficient, but it suffers from large access

latency due to larger index size as shown in Fig. 2. For

evaluating the performance of different index with

various object densities, assume that the number of grid

cells is fixed at 64 for both SAI and state-of-the-art NPI

because it simplifies the comparison as shown in Fig. 3.

The performance of SAI-64 has more stable to the

variation of the object density compared to state-of-the-

art NPI-64 because SAI enables the clients to check the

number of objects in each grid cells and to calculate the

upper bound of the distance of the k
th

NN with help of
cached data at clients. When the object density becomes

denser, then the upper bound decreases so resulting

clients reduce unnecessary grid cells.

Fig. 2: Performance of k - NN queries with k value using ACC

Fig. 3: Performance of 10 NN queries with various object densities

using ACC

Veeresha et al. 2017. Int. J. Vehicle Structures & Systems, 9(2), 87-90

90

5. Conclusion

K-nearest neighbour query processing in wireless

environments has been challenging issue due to limited

resources such limited bandwidth, low energy and

mobility. In this work, SAI has been utilized the

advantage of cached data at client site and improved

query performance. The experimental result has been

showing that performance of SAI better than state-of-

the-art NPI. In future, we can extent this work by

adapting advanced caching strategies and spatial queries.

REFERENCES:

[1] G. Li, Q. Zhou and J. Li. 2015. A novel scheduling
algorithm for supporting periodic queries in broadcast
environments, IEEE Trans. Mobile Computing, 14, 419-
432. https://doi.org/10.1109/TMC.2015.2398417.

[2] W. Sun, Y. Qin, J. Wu, B. Zheng, Z. Zhang, P. Yu and J.
Zhang. 2014. Air indexing for on-demand XML data
broadcast, IEEE Trans. Parallel and Distributed Systems,
25, 1371-1381. https://doi.org/10.1109/TPDS.2013.87.

[3] T. Imielinski, S. Viswanathan and B.R. Badrinath. 1997.
Data on air: Organization and access, IEEE Trans.
Knowledge and Data Engg., 9, 353-372. https://
doi.org/10.1109/69.599926.

[4] B. Zheng, W.C. Lee and D.L. Lee. 2007. On searching
continuous k-nearest neighbors in wireless data broadcast
systems, IEEE Trans. Mobile Computing, 6, 748-761.
https://doi.org/10.1109/TMC.2007.1004.

[5] K. Mouratidis, S. Bakiras and D. Papadias. 2009.
Continuous monitoring of spatial queries in wireless
broadcast environments, IEEE Trans. Mobile Computing,
8, 1297-1311. https://doi.org/10.1109/TMC.2009.14.

[6] U.L. Hou, H.J. Zhao, M.L. Yiu, Y. Li and Z. Gong. 2014.
Towards online shortest path computation, IEEE Trans.
Knowledge & Data Engg., 26, 1012-1025. https://doi.org/
10.1109/TKDE.2013.176.

[7] W. Sun, C. Chen, B. Zheng, C. Chen and P. Liu. 2015.
An air index for spatial query processing in road
networks, IEEE Trans. Knowledge and Data Engg., 27,
382-395. https://doi.org/10.1109/TKDE.2014.2330836.

[8] S. Kim and S.H. Kang. 2010. Scheduling data broadcast:
An efficient cut-off point between periodic and on-
demand data, IEEE Comms. Letters, 14, 1176-1178.
https://doi.org/10.1109/LCOMM.2010.101210.101228.

[9] P.T. Joy and K.P. Jacob. 2012. A comparative study of
cache replacement policies in wireless mobile networks,
Proc. Int. Symp. Adv, in Computing and Info. Tech., 609-
619. https://doi.org/10.1007/978-3-642-31513-8_62.

[10] B. Zheng, J. Xu and D. Lee. 2002. Cache invalidation
and replacement strategies for location-dependent data in
mobile environments, IEEE Trans. Computers, 10, 1141-
1153. https://doi.org/10.1109/TC.2002.1039841.

[11] W.C. Peng and M.S. Chen. 2005. Design and
Performance studies of an adaptive cache retrieval
scheme in a mobile computing environment, IEEE Trans.

Mobile Computing, 4, 29-40. https://doi.org/10.1109/
TMC.2005.9.

[12] W.C. Peng and M.S. Chen. 2005. Shared data allocation
in a mobile computing system: Exploring local and

global optimization, IEEE Trans. Parallel & Distributed
Systems, 16, 374-384. https://doi.org/10.1109/TPDS.
2005.50.

[13] L. Yin and G. Cao. 2006. Supporting cooperative caching

in adhoc networks. IEEE Trans. Mobile Computing, 5,
77-89. https://doi.org/10.1109/TMC.2006.15.

[14] Q. Zhu, D.L. Lee and W.C. Lee. 2011. Collaborative
caching for spatial queries in mobile P2P networks, IEEE
Int. Conf. Data Engg., 279-290.

[15] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios and S.
Teng. 2005. On trip planning queries in spatial databases,
Proc. 9th Int. Conf. Adv. Spatial Temporal Databases,
923-923. https://doi.org/10.1007/11535331_16.

https://doi.org/10.1109/TMC.2015.2398417
https://doi.org/10.1109/TPDS.2013.87
https://doi.org/10.1109/69.599926
https://doi.org/10.1109/69.599926
https://doi.org/10.1109/TMC.2007.1004
https://doi.org/10.1109/TMC.2009.14
https://doi.org/‌10.1109/TKDE.2013.176
https://doi.org/‌10.1109/TKDE.2013.176
https://doi.org/10.1109/TKDE.2014.2330836
https://doi.org/10.1109/LCOMM.2010.101210.101228
https://doi.org/10.1007/978-
https://doi.org/10.1109/TC.2002.1039841
https://doi.org/10.1109/‌TMC.2005.9
https://doi.org/10.1109/‌TMC.2005.9
https://doi.org/10.1109/TPDS.‌2005.50
https://doi.org/10.1109/TPDS.‌2005.50
https://doi.org/10.1109/TMC.2006.15
https://doi.org/10.1007/11535331_16

