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ABSTRACT: 

This paper handles the synergy between the design and control optimization problem for an active car suspension 

system consisting both active and passive components. The dynamics of the suspension system are modeled utilizing a 

three degree of freedom (3DOF), linear with time invariant quarter car model with capability to capture the impact of 

the passive stiffness on suspension deflection depending up on the spectral density of road disturbances. Direct 
transcription, a strategy which guarantees system optimality, is presented and utilized to find the optimal design of the 

suspension system. The active system dynamics were analyzed with modified level of control force to examine how 

dynamic system should be designed accordingly when the active control force is introduced. 
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1. Introduction 

Ride comfort is provided by car suspension system by 

isolating the passengers from ground disturbances and 

enhances the vehicle handling by adjusting the contact 

forces between the vehicle body, tires and the road. 

These desired requirements are alternately conflicting 

with the strength and stiffness. Softer suspension offers 

more comfort at the expense of degraded handling [1]. 

These requirements are traded off by arranging them in a 

weighted performance function, Bloza form, for 
optimization [2-8]. The optimal performance of a 

suspension system depends on whether it is passive or 

active. External energy sources are utilized by active 

suspension (e.g. hydraulic actuators), while passive 

suspension consists solely of power storage and 

dissipation components (e.g. springs and dampers) [1]. 

Suspension passive elements can only transmit forces 

which depend on relative vehicle chassis/tire motion, 

while active elements can produce forces that rely on 

absolute chassis motion. 

Consequently, active system can perform better than 
their passive counterparts significantly, at the cost of 

consuming external energy [1-2, 8-9]. When a 

suspension system consists both passive and active 

elements, these elements compete, instead of help each 

other [10], so failing to achieve the suspension's full 

performance potential [11]. This competition exemplifies 

the coupling between the controller and plant 

optimization problems [10, 12-16]. Sequential 

optimization of the suspension's controller (e.g. active 

elements) and plant (passive elements) does not account 

for this synergy and becomes unsuccessful to guarantee 
the system optimality. To overcome this sub-optimality 

and to design synergy systems, one must optimize both 

passive and active components simultaneously. Such a 

simultaneous optimization strategy is lacking in the 

previous works. This paper contributes an integrated 

coupling between the passive and active components for 

3DOF suspension optimization problem with its solution 

utilizing a direct transcription method. 

2. System-level optimization problem 

To optimize a passive and active sub-systems of a 

suspension system simultaneously, the designer must 

utilize a system-level model to capture the impact of the 
two sub-systems on performance index. The proposed 

model should show design aims in terms of design 

variables (e.g., spring wire diameter, spring helix 

diameter, pitch, number of active coils, valve diameter, 

working piston diameter, damper stroke) to determine 

the passive stiffness and damping coefficient rather than 

the obtained ones (natural frequencies and damping 

ratios). It must be simple when capturing the suspension 

system design tradeoff between the control cost, 

handling and the ride comfort. The dynamics of the 

suspension system are characterized by a linear time 

invariant quarter car 3DOF model as shown in Fig. 1. In 

the proposed model kgmkgm sp 240,90   and 
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36um  are the passenger with seat, sprung and 

unsprung masses. mNk p /8000  and mNscp /3000  

are the passenger seat stiffness and seat damping 

coefficient, sk  and sc  are the passive stiffness and 

damping coefficient, 160000N/musk  is the tire 

stiffness where the tire damping coefficient is neglected 

(due to its small value), )(tu  is the active force 

)(),(),( tztztz usp  and )(tzo  are the vertical 

displacements of the passenger and seat mass, the 

vehicle body mass, the wheel assembly mass and the 
road vertical disturbances respectively. 
 

 

Fig. 1: Combined active/passive suspension dynamics model 

The equations of motion of the active suspension 

system state space model with the control force and road 

disturbances is given by, 
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Where  psuspusou xxxxxxxxxtx  ,,,,,)(   is the 

suspension system states vector. The suspension system 

is excited by variances in road elevation oz  when the 

vehicle moves at speed smv /20 . A rough road input 

[17] and a ramp input are utilized to check the 

suspension. Simultaneous approach is explored for 

designing this active suspension system utilizing direct 

transcription method. Most previous studies dealt with 

sprung mass stiffness and damping coefficient as 

independent variable. Allison’s 2DOF model [21] treated 

the sprung mass stiffness and damping coefficient as 

dependent variable since they are dependent on the 

geometric variables (spring and damper design 

variables). The variation of co-design problem structure 

is a significant step towards co-design strategies that can 
handle the plant design with extra realistic details. The 

system level combined passive and active suspension 

components optimization is posed by using the equation 

of motion in state space Eqn. (1). The control force u(t) 

to the system is an active component between the vehicle 

body and the wheel assembly. 

A control force could be produced via an actuator 

(for e.g. an electromagnetic linear motor) [18, 19]. 

However; the actuator details won’t be discussed in this 

work which will be assumed to be an arbitrary control 

force trajectory u(t) that could be attained by imposing 

maximum force limits. The control variables vector cx  

is a time discretisation of the actuation force trajectory, 

 Tntc uuux ,.....,, 21  

The objective function of the system incorporates the 

ride comfort, handling and control utilizing the Lagrange 

term as follows, 

 
Ft

rusp dtuzzzJ
0

2

3

2

2

2
..

1 ))()()((    (2) 

Subject to: oxDtButAxtx
..

)()()(    (3) 

)()()( maxmin tututu      (4) 

ppp
xxx       (5) 

0pg       (6) 

Where 5

21 10,5.0    and 5

3 10  are the 

optimization parameters [21], px is the plant design 

variables vector, and pg  are the plant design constraints. 

The performance index, optimization objective, is a 

weighted summation of the RMS of passenger and seat 

acceleration, wheel hop and control force. 

Variables of optimization for the plant are the spring 

and damping geometric variables used to determine the 

passive stiffness sk  and damping coefficient sc  and for 

the control design variables, the time discretisation of 

control force. This work is assumed a linear with time 

invariant full state feedback where the control force 

bounds are imposed. The function of active control force 

in the system can be changed by making explicit bounds 

on the maximum control force. System results with 

bounds equal zero will be near to the results of passive 

system, thus the bounds increased gradually to monitor 

how the structure design with dynamic characteristics 

change as the active force plays an important role. An 

optimal solution to the introduced model will be 
indicated as the optimal active suspension design. 

3. Direct transcription method 

Direct Transcription (DT) method is guaranteed to find 

single system optimization design which is a category of 

“discretize-then-optimize” optimal control methods. DT 

method that is implemented to the active suspension 

optimization problem is given by, 
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Where the dimension of   is ).( st nn . tn  are the time 

discretisation points, sn is the number of states variables, 
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cx are the control design variables, px  is the plant 

design, Ft  is the simulation time, pg  are plant design 

constraints, i are the defect constraints to preserve the 

continuity for the states and control variables 

discretisation. The structure of the problem can be 

analyzed utilizing graph theoretic techniques [20]. Fig. 2 

depicts a flowchart of DT method that handles the active 

suspension as a co-design problem. The physical system 

analysis depends on the plant design and state design 

variables to determine the physical design constraints 

(.)pg  with the intermediate variables )( p  utilized in 

calculating the objective function with the dynamic 

constraints. 
 

 

Fig. 2: Analysis structure of DT for 3DOF active suspension system 

This structure of problem accounts for the coupling 

between the physical and control design variables which 

is a more realistic problem representation since it takes 

into account of the synergy between the plant and 

control design variables. While DT’s dimension is large 

(
st

nn .  elements), its problem structure shows important 

utilities where every iteration of the optimization is a 

complete constraint Jacobean as given in Table 1. The 

DT co-design algorithm is summarized as follows, 

1. Set ,1k initial kx and    
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3. If ,1  kk JJ terminate. 

4. ,1 kk go to step 2. 

Where k is an optimization iteration counter,   is 

termination tolerance and simulation satisfies the system 

dynamics. 

Table 1: Constraint Jacobean Structures 

  0td  …  nttd   01 tx  …  nttx1   0txc  …  ntc tx  

 01 tg  x 

… 

x x … 0 x … 0 

 11 tg  x … x 0 … 0 0 … 0 

    …     …     …   

 nttg1  x … x 0 … x 0 … x 

4. Plant design constraints 

The vehicle active suspension system in the introduced 

model uses a helical compression spring component with 

squared and ground end as shown in Fig. 3. The 

suspension coil spring hedges the absorber as it has the 

same axis. The spring design variables are D and d (the 

helix and wire diameters respectively), p (spring pitch), 

and aN  (the number of active coils) while the damper 

design variables are oD  (the spool valve outer 

circumference), pD  (working piston diameter), and sD  

(damper stroke). The complete physical design vector 

can be defined  spoap DDDNpDdx ,,,,,,  as the 

suspension spring stiffness and damping coefficient 

depend on the elements of physical design vector Eqn. (8 

and 9) respectively: 
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Where G = 77.2 GPa is the shear modulus, 7.0dC is 

the discharge coefficient, 2C  is the absorber valve 

coefficient, vk  is the spool valve spring stiffness, and 1  

the absorber fluid density. A fully reproducible detail of 
active suspension system important constraints is found 

in [21]. The first tow spring constraints depend on the 

spring index )/( dDC   and are given as follows, 

44)(1  Cxg p
                (10) 

124)(2  Cxg p
                (11) 

The constraint to prevent buckling is given by, 

026.5)(3  DLxg op
                             (12) 

The spring free length must be fit with the specified 

pocket length ( maxoL ) to the vehicle as follows, 

0)( max4  oop LLxg                              (13) 

The outer diameter of the spring must not exceed maxoD   

to avoid interference with vehicle components. 

0)( max5  op DDdxg                              (14) 
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Fig. 3: Helical compression spring used in the suspension model 

The spring internal diameter ought to be large to fit 

around the absorber within dc  clearance as follows, 

0)(2_)(6  ddcpp tDDdxg                (15) 

Where dt  is the absorber wall thickness. The following 

constraint is the suspension rattle space (permissible 

peak-to-peak displacement), 

0),( max7  gBsop LLLxg                (16) 

Where BL  is the bump stop thickness, and g  is the 

static suspension deflection. While the stress constraint 

is given by, 

0
)(

)(8 



sy

syd
p S

Sn
xg

                (17) 

Where   is the shear stress, dn  is the design factor, and 

syS  is shear yield stress. To ensure spring validity and 

linearity of equations of motions, Eqn. (17), the next 

constraint must be satisfied as, 

0
1.1

115.0),(
max

9 





fg

so
p

LL
xg



              (18) 

Where fmax  is the maximum spring deflection when 

the quarter car travels at 20 m/s over a rough road [17]. 

The shock absorber and its orifice are shown in Fig. 

4 and Fig. 5 respectively. To ensure adequate absorber 

range of motion and fitment with the specific length the 
following two constraints must be satisfied, 

0)(10  ssop DLLxg                (19) 

02)( max2111  oddsp LllDxg                             (20) 

Where 21, dd ll  quantify the distances required for 

absorber parts above and below the range of working 

piston. To ensure the maximum absorber pressure does 

not exceed the seal maximum pressure allowP , the 

following constraint must be used, 

0),( max12  allowp ppxg                (21) 

While the following constraint is to prevent the absorber 

from excessive velocity allow3

.

  as, 

0),( 3

.

max3

.

13  allowpxg                 (22) 

The last absorber constraint is related to the clearance 

requirement to the maximum displacement of the spool 

valve lift vallowx  as, 

0),( max14  vallowvp xxxg                (23) 

 

Fig. 4: Single tube telescope absorber section 

 

Fig. 5: Piston compression valve section 

5. Results and discussion  

An extension of DT to co-design problem was explained 

using 3DOF active suspension system. The problem of 

active suspension design was demonstrated utilizing DT 

method with full plant constraints. The DT solution for 

the plant design variables is given by, 









1697.0,0303.0

,0092.0,838.11,0304.0,1373.0,0181.0
*DTx  

The optimum plant design achieved has the best 

performance index, as the plant passive components 

values are mNeks /437.3  and mNscs /5.303  when 

the actuator control force is 1200N.  

6. Conclusion 

In this paper, an integrated active suspension system 

model with 3 masses has been developed and used for 

active suspension system. Direct transcription method is 

utilized where both state variables and control variable 

are discretized simultaneously by considering the plant 

design constraints. The numerical simulations showed 

that the optimal design based on the performance index 

of the suspension system is achieved when the actuator 
force is equal to 1200 N. DT method adoption as a 

strategy to calculate the optimal active suspension can 

assist the engineers to design passive system dynamics 

which combine in a perfect manner with the active 

element to obtain the best system performance. 
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