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ABSTRACT: 

Finite element (FE) method is commonly used to study cracks in structures. In this paper, J-integral method is applied 

over FE model of a cracked body to determine stress intensity factor (SIF) in the domain of linear elastic fracture 
mechanics (LEFM). This paper formulates the J-integral methodology for 2D FE model using a coarse mesh with less 

degrees of freedom. Two cases , a finite plate with edge cracks and a normal crack growth in fiber metal laminated 

plate, are demonstrated. Numerical implementation and mesh refinement issues to maintain path independent J-integral 

values are explored. 
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1. Introduction 

A technique was developed using conventional finite 

element (FE) analysis to determine stress intensity 
factors (SIFs) for normal cracks under mode-I loading. 

This technique involves the calculation of crack-tip 

stresses using singular finite elements. FE method 

(FEM) and boundary element method (BEM) are the 

most widely used techniques for evaluating SIF (K1) [1]. 

The most important region in modelling the fracture 

region is the region around the crack. While the domain 

is meshed, crack tip elements with nodal singularity are 

used [2]. Displacement correlation was employed to 

determine SIFs. A 2D structural analysis was performed 

with ANSYS to extract in an automatic fashion the value 
of the SIF for various cracks. Design of composite 

structures in many important industrial applications 

requires good understanding of the fracture behaviour 

near the bi-material interfaces. For example, it has 

become a widespread practice to strengthen reinforced or 

pressurised concrete structures with externally bonded 

Fiber-Reinforced Plastic (FRP) plates [3].  

The SIFs of a crack between two dissimilar 

materials are important parameters for evaluating 

delamination strength. Delamination failure can 

significantly affect the fatigue and damage tolerance 
behaviours of fiber metal laminates (FML) [4]. In order 

to prevent the failure in bi-materials, energy approaches 

and contour-integral approaches have the excellent 

feature of providing an accurate energy release rate or 

SIF even in the case of a coarse FE mesh. Moreover, 

contour-integrals including the J-integral are potentially 

important as nonlinear fracture mechanics parameters. 

The contour-integral approaches are applied to SIF 

analyses of two-dimensional crack problems [5]. The J-
integral is applied to a crack in a bi-material to an 

interface crack between two dissimilar materials. The 

proposed method gives accurate SIFs not only for a 

crack in a homogeneous material but also for an 

interface crack between dissimilar materials [6]. 

Structural design concepts traditionally use strength 

of material approach for designing a component. This 

approach does not anticipate the elevated stress levels 

due to the existence of cracks. The presence of such 

stresses can lead to catastrophic failure of the structure. 

Fracture mechanics accounts for the cracks or flaws in a 
structure. The fracture mechanics approach to the design 

of structures includes flaw size as one important 

variable, and fracture toughness replaces strength of 

material as a relevant material parameter [7].  

4. J-integral analysis methodology 

Fracture analysis is typically carried out either using the 

energy criterion or the SIF criterion. When the energy 

criterion is used, the energy release rate characterizes the 

fracture toughness. When the SIF criterion is used, the 

critical value of the amplitude of the stress and 

deformation fields characterizes the fracture toughness. 

Under certain circumstances, the two criteria are 
equivalent [8]. SIFs and energy release rates are limited 

to Linear Elastic Fracture Mechanics (LEFM). The J-

Integral is applicable to both linear elastic and nonlinear 

elastic-plastic materials. A major achievement in the 

theoretical foundation of LEFM was the introduction of 

the SIF K (the demand) as a parameter for the intensity 

of stresses close to the crack tip and related to the energy 
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release rate [9]. SIF is a measure of the change in stress 

within the vicinity of the crack tip. Therefore, it is 

important to know the crack direction and when the 

crack stops propagating. The SIF is compared with the 

critical SIF KIC (the capacity) to determine whether or 

not the crack will propagate. Dimensional analysis can 

be used to show that the SIF for mode-I fracture KI, has 

the following form: 

KI = gσ πa     (1) 

where, σ = nominal far field stress, 2a = crack length, g 

is a non-dimensional function depending on the size and 

geometry of the crack  & structural component and the 

type of loading. For normal cracks, its value ranges 

between 1 and 2. If KI is the same for two cracked 

bodies, the same stress field will exist at their crack tips. 

Thus, KI can be used as a similitude parameter to 

compare the response of the same material at the crack 

tip and also to compare the degree to which materials are 

influenced by the stress fields [10]. 

The J-integral was presented by Rice for two-

dimensional (2D) domains containing cracks. Consider a 
2D linear body of linear or nonlinear elastic material free 

of body forces and subjected to a 2D deformation field 

(plane strain, plane stress) so that all stresses σij depend 

only on two Cartesian coordinates (x, y). Supposedly if 

the body contains an edge crack as shown in Fig. 1, the 

strain-energy density W is defined as, 

                  
 

 
      

Where ε = (εij) is the infinitesimal strain tensor. Now, the 

J-integral is defined as, 

           
  

  
   

  

  
      (1) 

Where w = Strain energy density, u = Displacement 

along Y and TX and TY are as follows: 

                            (2) 

Rice [4] proved the path independent concepts and found 

that for small-scale yielding the stress energy release rate 

G is equal to the J-integral. Therefore, the SIF can be 

evaluated as follows: 

J = G      (3) 

  
  

 
  Plain stress    (4) 

  
  

 
       Plain strain   (5) 

The crack tip and integral counter is shown in Fig. 1. 

 

 

Fig. 1: Crack tip and integral counter 

The steps required to calculate J-integral for a 2-D 

model are described below:  

1. Read in the desired set of results, store the volume 

and strain energy per element, and calculate the strain 

energy density per element. 

2. Define a path for the line integral.  

3. Map the strain energy density, which was stored in 

the element table in step 1, onto the path, integrate it 

with respect to global Y. This gives us the first term 
of Eqn. (1). 

4. Map the component stresses x, y, and xy onto the 

path, define the Path unit normal vector, and calculate 

TX and TY using Eqn. (2). 

5. Shift the path a small distance in the positive and 

negative X directions to calculate the derivatives of 

the displacement vector (du/dx and du/dy) using 

PCALC as per the following code: 
 

*GET, DX, PATH,, LAST, S r + &/2 

DX=DX/100 

PCALC, ADD, XG, XG,,,, -DX/2 

PDEF, UXl, U, X 

PDEF, Wl, U, Y 

PCALC, ADD, XG, XG,,,, DX 

PDEF, UX2, U, X 

PDEF, W2, U, Y 

PCALC, ADD, XG, XG,,,, -DX/2 

C=l/DX 

PCALC, ADD, Cl, VX2, UXl, C,-C 

PCALC, ADD, C2,W2, UYl, C,-C 

 

6. Calculate J-integral using Eqn. (1). 

3. FE modelling: 

To illustrate the J-integral approach, the FE modeling of 

two simple examples, finite plate with double edge crack 

as shown in Fig. 2 and a bi-metal FML plate as shown in 

Fig. 3, are only presented. The bi-material of FML 

consists of 3 layers (0.4mm) of aluminium, 2 layers 

(0.3mm) of fiber and 4 layers (0.05mm) of resin leading 

to a total thickness of 2mm with length of 100mm and 

50mm width. The geometry parameters are tabulated in 

Table 1. For the plate with edge crack FE model, solid 8 

noded PLANE 82 element, available in ANSYS 11.0 
software, is used with plane strain option. Because of 

symmetry, one-quarter model is considered. The FE 

mesh of double edge crack is shown in Fig. 4. 
 

 

Fig. 2: Finite plate with double edge crack 
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Fig. 3: Schematic view of FML 

Table 1: Material properties and thickness 

Material 
Young’s 
modulus 

% 
elongation 

Poisson’s 
ratio 

Thickness 

Aluminium 72 GPa 18 0.3 0.4mm 

Fiber 71 GPa 4.8 0.3 0.3mm 

Resin 3.5 GPa 4 0.3 0.05mm 
 

 

Fig. 4: FE mesh of double edge crack 

5. Conclusion 

In order to analyse the fracture behaviour of cracked 

structures, it is necessary to know the SIFs. FE 

modelling based methodology has been established to 

obtain the J-integrals from which the SIF can be found. 

This paper only presented a part of ongoing research. 

The FE models to demonstrate the application of 

proposed methodology were presented in this technical 

note to demonstrate the ongoing research. Full validation 

and verification along with the predicted SIFs will be 

presented elsewhere. 
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