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ABSTRACT:

The problem of resonance in a geocentric synchronous satellite under the gravitational forces of the Sun and the Earth
subject to Poynting-Robertson (P-R) drag is the subject matter of this paper. Based on the assumption that the two
bodies the Earth and the Sun lie in ecliptic plane and the satellite in the orbital plane. Five resonance points results
from commensurability between the mean motion of the satellite and the average angular velocity of the Earth. Out of
all resonance, the 3:2 and 1:2 resonance occurs only due to velocity dependent terms of P-R drag. We have determined
the amplitude and time period of the oscillation in two different cases at those resonance points.
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1. Introduction

Poynting [1] and Robertson [2] have investigated the
radiation pressure, the Doppler shift of the incident
radiation and the Poynting drag which generally
constitutes the radiation force on a particle exerted by a
radiating body. Bhatnagar and Gupta [3] examined
resonance caused by solar radiation pressure in the
motion of an artificial Earth’s satellite. Hamiltonian and
the generating function, which is dependent on solar
radiation pressure was expanded in the power series of a
small parameter. Klacka [5] surveyed the problem of the
action of the solar radiation on the motion of
interplanetary dust particles and he explained the
difference between the action of electromagnetic solar
radiation and that of solar wind. They differ not only
from the point of view of physical nature of these
phenomena but also from the point of view of dust
particle's orbital evolution. Ragos et al [6] numerically
studied the existence of equilibrium points for particles
and their stability, moving in the vicinity of two massive
bodies which exert light radiation pressure.

Ragos et al [7] have discussed the photo
gravitational circular restricted three-body problem
including the P-R effect to describe the effect in the
vicinity of two massive radiating bodies. A modified
bisection method is used to compute the position of the
equilibrium and thereby establishing the stability. Liou
and Zook [8] have explored the effect of radiation
pressure, P-R drag, and solar wind drag on the dust
grains trapped in the mean motion resonances with the
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Sun and Jupiter in the restricted three-body problem
having negligible dust mass. They especially examined
the evolution of dust grain in the 1:1 resonances.
Kushvah [9] has investigated effect of P-R drag on linear
stability of equilibrium points in the generalized photo
gravitational Chermnykh's problem when a bigger
primary is radiating and a smaller primary is an oblate
spheroid. It is found that when P-R effect is taken into
account, these points are unstable in a linear sense.

Lhotka et al [10] surveyed the stability of motion to
the Lagrangian equilibrium points L4 and L5 in the
framework of restricted three-body problem, along with
the elliptic and spatial, subject to the radial component of
P-R drag. Yadav and Aggarwal [11-13] in the series of
papers discussed the resonances in a geo-centric
synchronous satellite under the gravitational forces of
the Moon, the Sun and the Earth including its equatorial
elasticity. The amplitude and the time period of the
oscillation was determined by using the procedure of
Brown and Shook [4]. Jain and Aggarwal [14]
investigated the existence of non-collinear liberation
points and their stability in the circular restricted three-
body problem in which they considered the smaller
primary as an oblate spheroid and bigger one a point
mass including the effect of dissipative forces specially
Stokes drag. Pushparaj and Sharma [15] used the method
of Poincare surface of section to study interior resonance
periodic orbits around the Sun in the Sun-Jupiter photo
gravitational restricted three-body problem.

The period of time for these orbits is found to
decease with the increase in the Sun's radiation pressure.
Most of the writers have explored two of the three; P-R
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drag, three-body problem or resonance. By taking into
consideration all the three factors, we have attempted to
fill the above said gap. The intent of this paper is to
investigate the resonance in the motion of geocentric
synchronous satellite under P-R drag of the three-body
problem. Careful analysis of equations of motion in Sect.
2 of this paper disclose that there are five points
R 's(i=1-5) of resonance in the motion of the orbiting

satellite commensurable between n and 4 where n is the

mean motion of the satellite and 4 the average angular

velocity of the Earth. Appraisal of the corresponding
amplitudes and time periods at resonance points have
been done in section 3. Section 4 scrutinize the
difference of amplitude and time period with respect to
¢ and different values of g.

2. Equation of motion

Let S represents the Sun, E the Earth and P the
satellite  with their masses Mg, M. andM,
respectively. The satellite moves around the Earth in
ecliptic plane. Let X,Y and Z be the co-ordinate
system with origin at the center of the Earth and unit
vectors [,J and K along the coordinate’s axes. Let
X,.Y, and Z, be another set of co-ordinate system in
the same plane with origin at the center of the Earth, and
with unit vectors fo,jo and KO along the co-ordinate
axes respectively (1b). Let the satellite be revolving
about the Earth with angular velocity @ and the system
is also revolving with the same angular velocity @ . Let
SE=r.,SP=F, EP=F, where S represents the Sun.
y = vernal equinox. 6 = the angle between direction of
ascending and direction of the satellite. ¢ = the angle
between direction of ascending and direction of the Sun.
c = velocity of light.

Let IEF> be the P-R drag per unit mass acting on the
satellite due to radiating body (Sun) in the arbitrary
direction as shown in Fig. (1a), given by [6],

M, F =f+f,+f,,

Where f,=FT,/r, = (Radiation pressure),
= V-I)T
fopUB)E

cC I

(Doppler shift owing to the

motion), ﬂ =—FV/c (Force due to the absorption and

re-emission of part of the incident radiation), V=
velocity of P. F = the measure of the radiation pressure.
G =Gravitational constant. The relative motion of the
satellite with respect to the Earth is obtained by,

:_:_:_FSP+FEP+FPMP FSE
r=r,—r.= M M
P E
= MM, . = MM
Where F, =-G—=L1,, Ry =-G——Er,
rS rE
’F’EP:—GMPE"E r. Thus,
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” ., M M, - V.E
F=—QF, £ —GEr+G—21, +(1-Q)F, (V1
I r I"E

. c

F F
Where q=1-—, F, =G—|\£|5, q=1-p, p=—.
K r, K

-]

Fig. 1(b): Configuration of 3-body problem with co-ordinate

Motion of the Earth relative to the Sun is given by,
# =GM/r.%. Also F=ri, I is the unit vector
alongf, F. =r.f., f. =Cosgl, +SingJ,,
. =r.Cosgl,+r.SingJ,. Using these values in the

equation of motion of the satellite with respect to the
Earth in vector form can be written as

F =¢?r.(Cosgl, +Sin¢50)—6%rf—(1—Q)Fg

{(V-@)Fs v}_qems@

c g C S

M)

In the rotating frame of reference with angular velocity
o of the satellite about the center of the Earth, we have

f)+r(%><fj+r (@I)E) .(2)

~(@- @)1

L 0r .
Fr=—1

or .
i

+2—(ox
ot

Where @ =6K . Taking dot products of Egns. (1) and

A A

(2) with 1,J respectively and equating the respective

coefficients, we get the equations of motion of the
satellite in the synodic coordinate system (see Table 1).

Table 1: Relationship between coordinate system

o Jo K
| a, b, C,
‘J aV by CY
K a, b, c,
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Egns. (3) and (4) are the required equations of motion of the satellite in polar form. These Equations are not integrable,
therefore we follow the perturbation technique and replace r,«,0 and y by their steady state valuesr, , «,, 90 and

v, respectively. We take 6 =6t, w=yt.

'r'—r9'2+G:fE=—qGM?§rs'I)+¢32(c039cos(¢—y/)—cosasinesin(gb—y/))—(1—q)G'\fs{(V'rsgr(rs'l)Jr(v(;I)} (3)
d(rzé)_—qGMsgr(fs-5)_¢2r{sinecos(¢—_w) }_(1_q)GMZSr{(V-@)<rs~J“)+<V-i)} %)
dt rs —C0Ssacosé sin (¢ - 1//) rs Crg c
Putting the steady state values in the R.H.S of Eqgns. (3) and (4), we get,
. _ = 1y . |cos@tcos(d—uyr, )t V-ENE D) (VT
ey OMe O (5 ), [eostiteos(d-vi) _(1_q)ths{(v B @ |)} ©
r Is —cosa sing,t sin(¢—y}o)t Is Cry c
4(70)_aoMin( 9) o, [SINOOOS(w0)t | e {(v AN (v-i)}, ©)
dt rs —Cosa, cosyt sin(g -y, )t cry c

Alsoas e <1, we have (L+ecosnt)” ~1+hecosnt. Where

a, = cose cosy —cosa sindsiny, a, = —sing cosy — cosa cosd siny, a, = sina siny, b, = cose siny + cosa sind cosy

X

b, = —sin@siny + cosa cosd cosyb, = —cosy sina, ¢, = sina sind, ¢, = sina cosd, ¢, = cosa

V= {— r. <¢5—1//0)coséotsin(¢5—wo)t +r ((/5—1/}0)sinéotcos((/ﬁ'—l/)o)tcosao} f+{r09+ r. (&—wo)sinéotsin(qﬁ'—y)o)t
+1. ($—yr, ) cosbrt cos((/%—y)o)tcosao} J +{—rE (qi—y)o)sinaocos(qﬂ—wo)t} K
Taking r?6 = constant,r =1/u and using above we get,

@+n2u:Gl\fE— Pte {cos(@o+¢ z//o)t+cos( ¢+://0)t+ecos(200+¢ z//o)t+2ecos(¢ 1//0)
dt o 252 (1_e

+ecos(2éo—¢5+y}0>t}—m{cos( ¢+y/0)t ecos(¢ wo)t+ecos(¢ z//o)t+ecos(200 ¢5+y)0)t

232 (1—e2 )2

—ecos (20, + ¢~y )t —cos (6, ¢+'/’0)} AGM, (1+ecosdpt)  qoM,r

3a? (1—e2) ’ 2rla’ (1— e?

){cos(éo+¢5—y}0)t

+ecos(2¢90+¢ wo)t+2ecos(¢+yxo)t+cos( ¢+1//O)t+ecos(200 ¢+1//0)t+cosaocos( ¢+z//0)
L PR (¢—¢/O)ZE
2ca’ (1—e2)
{sm(@o +h— Wo)t sm( ¢+z//0)t esm(zeo ¢3—y}0)t+esin(290 +¢5—y}0)t+2csin(¢5—y}0)t}
pF, (gzi—y'/o)cosao
2ca’ (l—ez)2
pF, (;&—V}O)(cosz a, —1) re
8r.ca’ (1— e? )2
+esin(2¢9O +3¢5—3¢/)0)t+2esin 3(¢5—z/}o)t —esin(2(9'0 —¢5+3y}0)t +2esin (&—y}o)t +esin (290 +¢5—y}0)t
pF, (qi—y)o)ré (0032 o —1) cos? a
8r.ca’ (1—e2 )2

—sm( 3¢+3¢//0)t esm(zao 3¢5+3y)0)t+esin(290+</5—¢//O)t+2esin(¢5—z//0)t+esin(290—¢5+z/'/0)t

+eC0s <:os(29'0 +¢—y'/o)t—cosa0 cos(é?o +¢5—1//0)t—ecosa0 cosZ(éo +(/§—y)0)t

{S|n(90+¢ wo)t+sm( ¢+z//0)t+esm(200+¢ z//o)t+esm(2¢90+¢ y/o)}

{sm(00+3¢ Syxo)t sm( ¢+y/0)t+sm<¢90+¢ z//o)t sm( 3¢+3y/0)

—esin(290—3¢3—3y}o)t+ {5|n(00+¢ y/o)t 5|n(90+3¢ 3z//o)t+sm( ¢+y/0)
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F, (qi—%) re (0052 a —1)
2rsca(1—ez)

—esin(zéo +3¢3—3y)o)t} + {sin 2(¢3—y}0)t+%sin(éo + 24&—1//0)t —%esin(éo 24+ Zz/}o)t}

ng (&"f’o ) rE2 COSZ %o
4rsca(1—ez)

{sin (26, + 29— 2y, )t +sin (20, 24 + Zw’o)t+%sin (30, + 2¢—2y)0)t+%sin(éo + 26~ 247 )t

pF, (¢5—'/70)r|52 {l

+%sin(390 _2¢}+2y}0)t +%sin (90 —24+ 2!/}0)'[}— 2rsca(1—ez) 2

sin 2(¢3—z//0)t+%sin(290 +2¢3—2y}0)t

+%sin(29‘o—2¢3+2y;0)t+%sin(9'0+2¢5—2y}0)t—%sin(90—2¢3—2y;0)t+§sin(39'0+2¢5—2y;0)t+§sin(a’0+2¢5—2y;0)t
: 3.2 (i .

It Dole ro (s (d + o t-sin(d ~d-vo )t prg::;‘zlf‘z)‘” o

—sin(éo—q3+z/)0)t—sin(éo—3¢3+3y)0)t+esin(290+3¢5—3y)0)t+esin3(¢5—y)o)t+esin(290+¢5—y)0)t+2esin(¢5—a/)o)t

PR, IE sin’ ao(gz}—y}O)COSaO
8r.ca’ (1— e? )2

—sin (o +3¢—3yrg ) t+sin 6y + g —yig ) t+esin (20, —§+yiq |t —esin (26, — 3¢+ 3y, )t - esin (26, + 34 - 3y, )t

PR, re sin? ao(gz}—a/)o)

2rsca(1—e2)

{sin(éo +3¢5—3y)0)t +sin (90 +¢—y)0)t

fesin(ZéO f¢+y}o)tfesin(9o 73¢5+3y)0)t}+

{sin(é’0 —¢+y)o)tfsin (éo 73¢5+3z/}0)t

-resin(2¢9'o +¢5—y}0)t} +

{sin 2(¢3—z//0)t +%sin(é0 + 2¢5—2y}0)t—%sin (90 —24+ Zz/)o)t}

ng (ﬁ_Wo)rE
2r.c

S

_gsin(Séo—2¢+2y}0)t—§sin(€0—2¢3+2y}0)t}— {sin (6 + vy )t—sin(dy — g+ vo )t
Lo\ 2 2
P (frsczf(’l):?;s % {sinz(é—z/;o)t—%sinz(éo+¢—%)t+%sin2(a’0—¢£+y;0)t+%sin(éo+2¢5—2q;0)t

f%sin (65— 20+ 20 )t fgsin(Séo + 2;/5721//0)tf%sin (65 + 2625 )t +%sin(3@o ~ 24+ 297, )t +%sin (6 72¢+¢0)t}

ng (¢_V)O)rE COsao
2r,c

nge-OI’EZ
4rsca(1—ez)

{sin(éo +¢?1//0)t —sin (90 7¢5+y}0)t} - {sin 29'0t+%sin 2(90 +¢57W’o)t
+%sin 2(00 ¢+z//0)t +Esm 390t+—sm 90t+—sm(300 + 2¢372y)0)t+%sin(9'0 +2¢57y}0)t+%sin (390 24+ Zy)o)t

PRy 90 rE Cos o

win(ly -2 - e

{ n2(§—yo )t-0.55in2(6, + 4§~y )t+0.55in2(6 — d+yo )t

+0.5€in (6, + 24— 247, )t - 0.5esin (Jo — 26 + 247 )t - 025esm(390+2¢ 27 )t —0.25esin (6, + 26— 2y, )t

(4
)
+Zsm(390 2¢+21//0)t+4sm G — 2¢+2(//0 } PFfhre sm 6?0+¢ z//0>t+sm(90 ¢5+y}0)t}

F,rZ cos? ¢, . . . . )
ME—ZO{sinZQOt—O.SsinZ(HO+¢—z/)0)t—0.53in2<00—¢+y)o)t+§sin3€0t+§sin€0t
4rsca(1—e )

®sin (36, + 29— 270 )t — i Gy + 26— 2475 )t — —sin (30, — 26 + 247 ) t—sin (6 — 26+ 27, )t PPyt coszg
—=sin +2¢— —=sin(6, +2¢— ——sin —2¢+ —=sin(6, —2¢+ +—

4 0 Yo 2 0 Yo 4 0 Yo 2 0 Yo 4rsca(1—e2)

{sin2(¢—¢0)t+o.5sin2(éo+¢—y;0)t—o.55in2(9'0—¢+y)o)t+o.25esin(39’0+2¢5—2¢0)t

+0.75esin (J + 26— 2y, )t —0.25esin (36, — 24 + 247 )t -0.75esin (&, —2¢5+2y;0)t}

Since the solution of unperturbed system, d2u/d6?+u=GMg /177, is given by I/r =1+ecos(0-w), Where,
r26 = constant,| = a(l—ez), and e, = constant of integrations.

u:HeL(g_w), O-w="f=0gt=nt (say).

a(l—ez)
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Thus we can write,
2

+Cq cos(n—gz'H—t,//o)HC9 cos(n—(,/5+z//o)t+c10 sin(n—¢'$+z,//o)t+Cllcos(2n+¢3—y/0)t+C12 sin(2n+¢5—y/o)t

372+n2u = C, +C,sinnt + C,sin2nt + C,sin3nt + Cg cos(g/}fyxo)t +Cq Sin(éfylo)t+C7 cos(n +¢571//0)t +Cq sin(n+¢371,//o)t

Y]

+Cyg cos(2n —¢+z//0)t +Cpy sin(2n—¢3+y/o)tC15 sin 2(¢—¢O)t+C16 sin(2n+2¢§—2wo)t +Cpy sin(2n—2¢+2y}0)t

+Cyg Sin N+ 24— 2y, )t + Ciq 5in (n— 26+ 247 ) t+ Cyg 5in (30 + 26 — 247 )t + Cyy 5in (30— 26+ 247 )t + Cy, cOS N

The solution is given by

u=ACos(nt— a)+ Cysin2nt

C,sin3nt

C, C tcost
+
2n

M

n? —(2n)’
C,cos(n+g—vyr,)

~(any

}(cg,cos(é—v)o)t}{cesin(gz;_%)t]
n2_<¢_l/./0)2 nz—(é—l/)o)z
$+v,)

t Cysin(n+g—y, )t
. 2 + . 2
nz—(n+¢—z//0) ﬂz—(n+¢—‘/’o)

+

}{Cgcos(n—
n®—(n-

t}{cmsin( —f)t }
2 n2—(

$+) —g)

®)

Cyycos(2n+g—y, )t | [ Cpusin(2n+4—y, )t
+
n2—(2n+¢5—z//o)2 n2—(2n+q5—z/‘/0)2

n? —(2n—g+y,)

J+[Cl3cos(2n—¢+y)0)

Cissin2(—y7y )t | [ Ciesin(2n+ 24— 2¢7, )t
+ 2 + . 2
n? —4(¢-y,) n’ —(2n+2¢ -2y, )

C,,C0s (2n — 24 + 2y, )t
+ . 2
n® —(2n-2¢+2y,)

C,sin(3n—24 + 2y, )

t C,,sin 2n ¢+1//0
— |+
n® — 2n ¢+1//0
] (Clssm(n+2¢ 27, )
+ 2

n? —(n+2¢—2y,)

‘J

+

CioSin(N—24+2y7, )t | [ Cposin(3n+24—2y7, )t

+ +
n? —(n—24+2y,) n® —(3n+24-2y,)
2.1. Resonance

Where C,'s are given in Appendix A.

It is clear that the motion become indeterminate if any
one of the denominator vanishes in Eqgn. (7), and hence
the resonance occur at those points. It is found that
resonance occurs at five pointn=¢, n=24, 3n=4,
2n=¢, 3n=24. Out of all resonance, the 3:2 and 1:2

resonance occurs only due to P-R drag. Amplitude and
time periods at resonance points are deduced below.

3. Time period and amplitude at the
resonance point

To determine the amplitude and time period at the
resonance points. We have followed the special method

[3]. Resonance at n =g . In our problem solution of Eqn.

(7) is periodic and known which is the condition of Ref.
[3]. So we followed the same to determine amplitude and

time period atn=¢ It is suggested to obtain the
solution of Eqgn. (7) when that of

d” LI+n u=0

9)

is periodic and is known. The solution of Eqgn. (9) is
u=kcCos s,

Where
s=nt+e, n=.fk /k=Functionofk;  (10)

K, k, and ¢ are arbitrary constants.

t C,,tcosnt
=" 2n

N —(3n—2¢+2y,)

As we are probing the resonance in the motion of the
satellite at the pointn = ¢, the resulting Eqn. (7) can be
written as

((jj l2“|+n u=HA'Cosn't=Hy' (Say),
Where
#r>—qGM, )r.e
H :( 5 ) = — Constant,
a’(1-¢*) r
A=-1 (11)
v’ _v_ A’Cosn't, w =A'Cosn't,
au
kA’ !. !
z//=7{Cos(nt+s)+C05(nt—s)}.
Then
dk _Hoau ':ﬂa_‘//, (12)
da W os W os
ds _ _ﬂ@_uw,:n_ﬂﬁ_y/’ (13)
dt W ok W ok
Where
SN
ok\ os)os o8 ok’

=a function of k only. 14)
Sincen, W are function of k only, we can put Egns. (12)

and (13) into canonical form with new variables
k, and B defined by
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(15)
(16)

dk, =Wdk,

dB = —ndk, =-nWdk,
Egns. (15) and (16) can be put in the form

dk, o ds 0

—L=— , —=——(B+

dt as( v) dt as(

Differentiating Eqn. (13) with

Hy).

respect to t and
I . ds dk

substituting the expression foraand e we have

2 2 2
d’s H{@a_y/_nay/_aw}+

A2 W |0k s osok  okos

Tl ac Vol e (17)
K* | osok ok ok\W ok /) os

Since the last expression of Eqn. (17) has the factor H? it
may, in general, be neglected in a first approximation. In
Egn. (11) we find s and t are present in ' as sum of the

periodic terms with argument s’=s—n’'t. In our case,
the affected term is,

HZ{aZV, oy \y 0 (i@l/lj@_{//}

v = g A'Coss'. (18)
Egn. (17) for s’ isthen,
2ar
4 (nony 2 E(—l a—wj =0,
dt W [og\n—n" &5’
or
2ar 2
d i +(n—n’)ZE i(ij Sins’=0 (19)
dt W |og\n-n'

At first approximation, we put k =Kk, n=n,, W =W,.
Then Egn. (19) can be written as,

d’s’ n2 H a( KA’
(=) o o
Wo{ak n-n

dt?
If the oscillation be small, Egn. (20) can be put in the

form,
j} s'=0
0

d’s n2 H | o kA
—+(ny—n') —1 =
dt W, (ok\n-n'

or

d?s’ ,
F"r plzs :O,

Where

j} Sins'=0 (20)

(21)

fy(ézrsa_qGMs)rEe k1

\j 2a’ (1—e2)2 e \Woko
2
S E L e
ok\ o0s)os  0s® ok,

- {x/ECos2 (n't+ g)}o = Jk, Cos (gt +5,).
The solution of Eqn. (21) is given by

s'=ASin(pt+A4)

p= (22)

(23)
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Where A:\/E/p, k,,A,= Constants of integration,
s’=s-n't. The Eqgn. for s gives,

s=n't+ASin(pt+4) (24)

Kk =Ky + HA' (/W ), 2 Cos(pyt + 4,

1

(25)

Where k, is determined fromn,=n’. Since n, is a
known function ofk;. The amplitude ‘A’ and the time
period T are given by,

AZ\Isz/pl- T 22”/p17
Where k, is an arbitrary constant,
_ I (ézrss_qGMs)rEe
B \IZaZ (1—e2)2 %k, Cos(¢+&, ) .

Using Eqn. (13), k, may be written as k, =\;'E/nU . We
may choose the constants of integration as k, =1,
k,=1, & =0. The amplitude and time period are
given by,

2, ,2a2 (1-¢? )2 re
A= Cosg,

\/((52@3 —qGM; ) fe€n,

4z, fZa2 (1-¢? )2 r?
Cosg.
\/(4521;3 —qGM; ) l€n,

In the same manner we have calculated amplitudes and
time periods at other points. Thereafter two cases arise:

e Case 1: If we take only solar radiation pressure as
perturbing forces, then there are only three points at
which resonance occurs. Corresponding amplitudes
and time-periods are given in Table 2 below.

e Case 2: In addition to the above, if we consider
velocity dependent terms of P-R drag, then five
points of resonance occur where four points of
resonance are same as in case 1, and 1:2 and 3:2
resonances occur only due to velocity dependent
terms of P-R drag. But amplitudes and time-periods
at all resonance points are not same as in the case
of solar radiation pressure. Corresponding
amplitude and time-period are given in Table 3.

Table 2: Ai’s and Ti’s, at resonance points with only radiation
pressure as perturbing force

Resonance  Amplitude Time period
n=g¢ A1,A2 T1,T2
2n=¢ A5 T5
3n=¢ A9 T9

Table 3: Ai’s and Ti’s, at resonance points with velocity
dependent terms of P-R drag as perturbing force

Resonance ~ Amplitude Time period
n=g¢ A3,A4 T3,T4
2n=¢ A6 T6
n=2 A7,A8 17,78

3n=2¢ A10 T10

Valuesof A's & T,'s are given in Appendices B & C.
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4. Discussion and conclusion

We have investigated the resonance in the motion of a
satellite in the Earth-Sun system due to P-R drag, by
using a special method of Brown and shook (1933).
After deducing Equation of motion of the geocentric
satellite in vector as well as in polar form, it is found

that there are five points R(n=g¢), R,(3n=4),
Ry(2n=4), Ry(3n=24) and Rs(n=24) at which
resonances occurs, where n= 90 the angular velocity of

a satellite is and ¢ is average angular velocity of the
Earth. The 1:1 resonance occurs four times, 2:1, 1:2
resonance occur twice while 3:1 and 3:2 resonance occurs
once only. There are two resonance points 3:2 and 1:2
occur only due to velocity dependent terms of P-R drag.
If we ignore this perturbing force then resonance will
occur only at three points in the equation of motion of a
satellite. Using the satellite data, a = 6921000m; e =
0065; ¢ = 0.15695 °fs, rs = 149599 x 10°m, r = 149.6 x
10°m, ¢ = 3x10° m/s, we can make the quantities
dimensionless by taking Mg +Mg =1, G=1, r, =1.

From the expression of amplitude and A and time

period T, it is clear that A and T, are periodic. From
Fig. 2(a) and 2(b) we observe that amplitudes and time
period increases when ¢ increases and it is maximum at
¢=0. From Eqgn. (3) (1—q) is the factor of velocity
dependent terms of P-R drag, when g increases (1-q)

decreases then effect of velocity dependent terms of P-R
decreases and hence when P-R decreases then amplitude
as well as time period increases. Figs. 3(a) and 3(b) also
explain the amplitude and time period with respect to ¢ .

In this case it can be observed that amplitude become
very high of greater range of ¢. But not in the case of

velocity dependent terms of P-R drag. Similarly Fig. 3c
explain the variation of amplitude A, for 0<¢<90°

and 0<q<1 at resonance 1:2. Fig. 3(c) shows that
amplitude is periodic with respect to ¢ and it increases

for an increase in g and vice-versa. When velocity
dependent terms of P-R decreases then amplitude
increases. The present study is becoming of more
interest in the commensurability orbits, for example
navigation satellite system.

= Aqy

= Ag3

-4 - 0 2 4 )

Fig. 2(a): Variation in amplitudes for 0°< ¢$<90° at q, = 0.25 (red),
. = 0.45 (green), gs = 0.65 (blue)
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0.010 k— - o . L |
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Fig. 2(b): Variation in time period, for 0°< $<90° at g, = 0.25 (red),
02 = 0.45 (green), gz = 0.65 (blue)
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Fig. 3(a): Variation in amplitudes for - 1° <¢p <1°and0<q<1lat
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Fig. 3(b): Variation in time periods for - 1°<¢p <1°and0<q<1
at resonance 1:1
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Fig. 3(c): Variation in amplitudes for - 90°< ¢ <90°and 0 < q<1
at resonance 1:2
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