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ABSTRACT: 

The problem of resonance in a geocentric synchronous satellite under the gravitational forces of the Sun and the Earth 

subject to Poynting-Robertson (P-R) drag is the subject matter of this paper. Based on the assumption that the two 

bodies the Earth and the Sun lie in ecliptic plane and the satellite in the orbital plane. Five resonance points results 

from commensurability between the mean motion of the satellite and the average angular velocity of the Earth. Out of 

all resonance, the 3:2 and 1:2 resonance occurs only due to velocity dependent terms of P-R drag. We have determined 

the amplitude and time period of the oscillation in two different cases at those resonance points. 
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1. Introduction 

Poynting [1] and Robertson [2] have investigated the 

radiation pressure, the Doppler shift of the incident 

radiation and the Poynting drag which generally 

constitutes the radiation force on a particle exerted by a 

radiating body. Bhatnagar and Gupta [3] examined 

resonance caused by solar radiation pressure in the 

motion of an artificial Earth’s satellite. Hamiltonian and 
the generating function, which is dependent on solar 

radiation pressure was expanded in the power series of a 

small parameter. Klacka [5] surveyed the problem of the 

action of the solar radiation on the motion of 

interplanetary dust particles and he explained the 

difference between the action of electromagnetic solar 

radiation and that of solar wind. They differ not only 

from the point of view of physical nature of these 

phenomena but also from the point of view of dust 

particle's orbital evolution. Ragos et al [6] numerically 

studied the existence of equilibrium points for particles 
and their stability, moving in the vicinity of two massive 

bodies which exert light radiation pressure. 

Ragos et al [7] have discussed the photo 

gravitational circular restricted three-body problem 

including the P-R effect to describe the effect in the 

vicinity of two massive radiating bodies. A modified 

bisection method is used to compute the position of the 

equilibrium and thereby establishing the stability. Liou 

and Zook [8] have explored the effect of radiation 

pressure, P-R drag, and solar wind drag on the dust 

grains trapped in the mean motion resonances with the 

Sun and Jupiter in the restricted three-body problem 

having negligible dust mass. They especially examined 

the evolution of dust grain in the 1:1 resonances. 

Kushvah [9] has investigated effect of P-R drag on linear 

stability of equilibrium points in the generalized photo 

gravitational Chermnykh's problem when a bigger 

primary is radiating and a smaller primary is an oblate 
spheroid. It is found that when P-R effect is taken into 

account, these points are unstable in a linear sense. 

Lhotka et al [10] surveyed the stability of motion to 

the Lagrangian equilibrium points L4 and L5 in the 

framework of restricted three-body problem, along with 

the elliptic and spatial, subject to the radial component of 

P-R drag. Yadav and Aggarwal [11-13] in the series of 

papers discussed the resonances in a geo-centric 

synchronous satellite under the gravitational forces of 

the Moon, the Sun and the Earth including its equatorial 

elasticity. The amplitude and the time period of the 
oscillation was determined by using the procedure of 

Brown and Shook [4]. Jain and Aggarwal [14] 

investigated the existence of non-collinear liberation 

points and their stability in the circular restricted three-

body problem in which they considered the smaller 

primary as an oblate spheroid and bigger one a point 

mass including the effect of dissipative forces specially 

Stokes drag. Pushparaj and Sharma [15] used the method 

of Poincare surface of section to study interior resonance 

periodic orbits around the Sun in the Sun-Jupiter photo 

gravitational restricted three-body problem. 

The period of time for these orbits is found to 
decease with the increase in the Sun's radiation pressure. 

Most of the writers have explored two of the three; P-R 
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drag, three-body problem or resonance. By taking into 

consideration all the three factors, we have attempted to 

fill the above said gap. The intent of this paper is to 

investigate the resonance in the motion of geocentric 

synchronous satellite under P-R drag of the three-body 

problem. Careful analysis of equations of motion in Sect. 

2 of this paper disclose that there are five points 

 ' 1 5 iR s i  of resonance in the motion of the orbiting 

satellite commensurable between n and   where n is the 

mean motion of the satellite and   the average angular 

velocity of the Earth. Appraisal of the corresponding 

amplitudes and time periods at resonance points have 

been done in section 3. Section 4 scrutinize the 

difference of amplitude and time period with respect to 

  and different values of q. 

2. Equation of motion 

Let S represents the Sun, E  the Earth and P  the 

satellite with their masses ,SM EM  and
PM  

respectively. The satellite moves around the Earth in 

ecliptic plane. Let ,X Y  and Z  be the co-ordinate 

system with origin at the center of the Earth and unit 

vectors ˆ ˆ,I J  and K̂  along the coordinate’s axes. Let 

0 0,X Y  and 
0Z  be another set of co-ordinate system in 

the same plane with origin at the center of the Earth, and 

with unit vectors 0 0
ˆ ˆ,I J  and 0K̂  along the co-ordinate 

axes respectively (1b). Let the satellite be revolving 

about the Earth with angular velocity   and the system 

is also revolving with the same angular velocity . Let 

, , ,E SSE r SP r EP r    where S  represents the Sun. 

 = vernal equinox.   = the angle between direction of 

ascending and direction of the satellite.    the angle 

between direction of ascending and direction of the Sun. 

c   velocity of light. 

Let FP  be the P-R drag per unit mass acting on the 

satellite due to radiating body (Sun) in the arbitrary 

direction as shown in Fig. (1a), given by [6], 

1 2 3F ,P PM f f f     

Where 1 S Sf F r r   (Radiation pressure), 

 
2

S S

S

v r r
f F

c r


    (Doppler shift owing to the 

motion), 3f F v c   (Force due to the absorption and 

re-emission of part of the incident radiation), v   

velocity of P. F = the measure of the radiation pressure. 

G Gravitational constant. The relative motion of the 

satellite with respect to the Earth is obtained by, 
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Fig. 1(a): Configuration of 3-body problem without co-ordinate 

 

Fig. 1(b): Configuration of 3-body problem with co-ordinate 

Motion of the Earth relative to the Sun is given by, 
2 3 .S EGM r   Also ˆr rI , Î  is the unit vector 

along r , ˆ
E E Er r r , 0 0

ˆ ˆˆ Cos SinEr I J   , 

0 0
ˆ ˆCos SinE E Er r I r J   . Using these values in the 

equation of motion of the satellite with respect to the 

Earth in vector form can be written as 

2

0 0 3
ˆ ˆ ˆ(Cos Sin ) (1 )E

E g

M
r r I J G rI q F

r
      

 .
.

S S S S

S S

v r r qGM rv

c r c r

  
  

  
 (1) 

In the rotating frame of reference with angular velocity 

  of the satellite about the center of the Earth, we have 

 
 
 

2

2

ˆ
ˆ ˆ ˆ2 ,

ˆ

Ir r
r I I r I r

t tt I

 


 

      
        

       

(2) 

Where K̂  . Taking dot products of Eqns. (1) and 

(2) with ˆ ˆ,I J  respectively and equating the respective 

coefficients, we get the equations of motion of the 

satellite in the synodic coordinate system (see Table 1).  

Table 1: Relationship between coordinate system 

 0Î  0Ĵ  0K̂  

I  xa  xb  xc  

J  ya  yb  yc  

K  za  zb  zc  
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Eqns. (3) and (4) are the required equations of motion of the satellite in polar form. These Equations are not integrable, 

therefore we follow the perturbation technique and replace , ,r    and   by their steady state values
0r ,

0 , 0  and 

0  respectively. We take 0 ,t   
0t  . 

     2

2 3 2

2
ˆ ˆ ˆ( ) ( )( ) ( )

( ) 1S S S S SE

SS S

qGM r I GM v r r IGM v I
cos cos cos sin sin q

cr cr
r r

r r
       

     
         

  
   (3) 

   

 
 

2

2

3 2

ˆ ˆ ˆ( ) ( )( ) ( )
1S S S S S

SS S

d r sin cosqGM r r J GM r v r r J v J
r q

dt cr cr rcos cos sin

   


   

          
       

       

   (4) 

Putting the steady state values in the R.H.S of Eqns. (3) and (4), we get, 

 

 
 

0 0
2

2 3 2

0

2

0
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  (6) 

Also as 1e  , we have  
1

11 cos 1 cos
h

e nt h e nt   . Where 

, , , ,

, , ,

x y z x

y z x y z

a cos cos cos sin sin a sin cos cos cos sin a sin sin b cos sin cos sin cos

b sin sin cos cos cos b cos sin c sin sin c sin cos c cos
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Taking 2r   = constant, 1/r u  and using above we get, 
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Since the solution of unperturbed system, 2 2 2 2
0 0 ,Ed u d u GM r    is given by  1 cosl r e     , Where,  

 2 2constant, 1 ,  r l a e  and , constant of integrationse  . 
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Thus we can write, 
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(7) 

The solution is given by 

 
   

 

 

 

 

 

 

 

 

5 0 6 031 2 4

2 2 2 2 22 2 2 2

0 0

7 0 8 0

2 2
2 2

0 0

2 3

2 2 3

C cos t C sin tC sin ntC C tcost C sin nt
u ACos nt

nn n n n n n n

C cos n t C sin n t

n n n n

   


   

   

   

        
             
                  

      
   
  

     
  

 

 

 

 

 

 

 

 

 

 

9 0 10 0

2 2
2 2

0 0

11 0 12 0 13 0 14

2 2 2
2 2 2

0 0 0

2 2 2 2

2 2 2

C cos n t C sin n t

n n n n

C cos n t C sin n t C cos n t C sin n

n n n n n n

   

   

      

     

      
     
    

     
    

           
        
     

        
     

 

 

 

 

 

 

 

 

 

 

0

2
2

0

15 0 16 0 17 0 18 0

2 2 2 2
2 2 2 2

0 0 0 0

19

2

2 2 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2

2 2

t

n n

C sin t C sin n t C cos n t C sin n t

n n n n n n n

C sin n



 

       

       

 

 
 
 

  
 

             
          
       

          
       

 


 

 

 

 

 

 

0 20 0 21 0 22

2 2 2
2 2 2

0 0 0

3 2 2 3 2 2 cos

22 2 3 2 2 3 2 2

t C sin n t C sin n t C t nt

nn n n n n n

   

     

                                  
     

  (8) 

Where 'iC s  are given in Appendix A. 

 

2.1. Resonance 

It is clear that the motion become indeterminate if any 
one of the denominator vanishes in Eqn. (7), and hence 

the resonance occur at those points. It is found that 

resonance occurs at five point n  , 2n  , 3n  , 

2n  , 3 2n  . Out of all resonance, the 3:2 and 1:2 

resonance occurs only due to P-R drag. Amplitude and 

time periods at resonance points are deduced below. 

3. Time period and amplitude at the 

resonance point 

To determine the amplitude and time period at the 

resonance points. We have followed the special method 

[3]. Resonance at n  . In our problem solution of Eqn. 

(7) is periodic and known which is the condition of Ref. 

[3]. So we followed the same to determine amplitude and 

time period at n 
. 

It is suggested to obtain the 

solution of Eqn. (7) when that of 

2
2

2
0

d u
n u

dt
     (9) 

is periodic and is known. The solution of Eqn. (9) is 

Cos ,u k s  

Where 

1,s nt n k k    Function of k; (10) 

 K, 1k and  are arbitrary constants. 

As we are probing the resonance in the motion of the 

satellite at the point n  , the resulting Eqn. (7) can be 

written as 

2
2

2
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d u
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      (Say), 
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Where 

2

2
,

u u u u
W n n

k s s ks

     
  
    

 

 = a function of k only.   (14) 

Since ,n W  are function of k only, we can put Eqns. (12) 

and (13) into canonical form with new variables

1k and B defined by 
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1 ,dk Wdk                  (15)

1 ,dB ndk nWdk                    (16) 

Eqns. (15) and (16) can be put in the form 

 1 ,
dk

B H
dt s




 


  .
ds

B H
dt s




  


 

Differentiating Eqn. (13) with respect to t and 

substituting the expression for
ds dk

and
dt dt

, we have 
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                      (17) 

Since the last expression of Eqn. (17) has the factor H2 it 

may, in general, be neglected in a first approximation. In 

Eqn. (11) we find s and t are present in   as sum of the 

periodic terms with argument  
.s s n t    In our case, 

the affected term is, 
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At first approximation, we put 0 0 0, ,k k n n W W   . 

Then Eqn. (19) can be written as,  
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If the oscillation be small, Eqn. (20) can be put in the 

form, 
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The solution of Eqn. (21) is given by 

1Sin( )s A p t                   (23) 

Where 
2A k p , 2 0,k    Constants of integration, 

.s s n t    The Eqn. for s gives, 
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Where 
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0n n . Since 
0n  is a 

known function of
0k . The amplitude ‘A’ and the time 

period T are given by, 

2 1 1, 2A k p T p  , 

Where 
2k  is an arbitrary constant, 

 

   

2 3

2
2 2 3

0 02 1 Cos

s s E

s

r qGM r e
p

a e r k



 




 
. 

Using Eqn. (13), 
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In the same manner we have calculated amplitudes and 

time periods at other points. Thereafter two cases arise: 

 Case 1: If we take only solar radiation pressure as 

perturbing forces, then there are only three points at 

which resonance occurs. Corresponding amplitudes 

and time-periods are given in Table 2 below. 

 Case 2: In addition to the above, if we consider 

velocity dependent terms of P-R drag, then five 
points of resonance occur where four points of 

resonance are same as in case 1, and 1:2 and 3:2 

resonances occur only due to velocity dependent 

terms of P-R drag. But amplitudes and time-periods 

at all resonance points are not same as in the case 

of solar radiation pressure. Corresponding 

amplitude and time-period are given in Table 3. 

Table 2: Ai’s and Ti’s, at resonance points with only radiation 

pressure as perturbing force 

Resonance Amplitude Time period 

     A1, A2 T1, T2 

      A5 T5 

      A9 T9 

Table 3: Ai’s and Ti’s, at resonance points with velocity 

dependent terms of P - R  drag as perturbing force 

Resonance Amplitude Time period 

     A3, A4 T3, T4 

      A6 T6 

      A7, A8 T7, T8 

       A10 T10 

Values of 'iA s  & 'iT s  are given in Appendices B & C.  
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4. Discussion and conclusion 

We have investigated the resonance in the motion of a 

satellite in the Earth-Sun system due to P-R drag, by 

using a special method of Brown and shook (1933). 

After deducing E quation of motion of the geocentric 

satellite in vector as well as in polar form, it is found 

that there are five points  1 ,R n    2 3 ,R n   

 3 2 ,R n   4 3 2R n   and  5 2R n   at which 

resonances occurs, where 0n  the angular velocity of 

a satellite is and φ̇ is average angular velocity of the 

Earth. The 1:1 resonance occurs four times, 2:1, 1:2 

resonance occur twice while 3:1 and 3:2 resonance occurs 

once only. There are two resonance points 3:2 and 1:2 

occur only due to velocity dependent terms of P-R drag. 
If we ignore this perturbing force then resonance will 

occur only at three points in the equation of motion of a 

satellite. Using the satellite data, a = 6921000m; e = 

0065; φ˙ = 0.15695 /s, rs = 149599 × 106m, r = 149.6 × 
109m, c = 3×108 m/s, we can make the quantities 

dimensionless by taking 1S SM M  , 1G  , 1Sr  .  

From the expression of amplitude and 1A  and time 

period 
1T  it is clear that 1A  and 

1T are periodic. From 

Fig. 2(a) and 2(b) we observe that amplitudes and time 

period increases when q increases and it is maximum at 

0  . From Eqn. (3)  1 q  is the factor of velocity 

dependent terms of P-R drag, when q increases  1 q  

decreases then effect of velocity dependent terms of P-R 

decreases and hence when P-R decreases then amplitude 

as well as time period increases. Figs. 3(a) and 3(b) also 

explain the amplitude and time period with respect to . 

In this case it can be observed that amplitude become 

very high of greater range of . But not in the case of 

velocity dependent terms of P-R drag. Similarly Fig. 3c 

explain the variation of amplitude 
4A  for 00 90   

and 0 1q   at resonance 1:2. Fig. 3(c) shows that 

amplitude is periodic with respect to   and it increases 

for an increase in q and vice-versa. When velocity 

dependent terms of P-R decreases then amplitude 

increases. The present study is becoming of more 

interest in the commensurability orbits, for example 

navigation satellite system. 
 

 

Fig. 2(a): Variation in amplitudes for 0°˂ ɸ<90° at q1 = 0.25 (red), 

q2 = 0.45 (green), q3 = 0.65 (blue) 

 

Fig. 2(b): Variation in time period, for 0°˂ ɸ<90° at q1 = 0.25 (red), 

q2 = 0.45 (green), q3 = 0.65 (blue) 

 

Fig. 3(a): Variation in amplitudes for - 1° ˂ ɸ ˂ 1° and 0 ˂ q ˂ 1 at 

resonance 1:1 

 

Fig. 3(b): Variation in time periods for - 1° ˂ ɸ ˂ 1° and 0 ˂ q ˂ 1 

at resonance 1:1 

 

Fig. 3(c): Variation in amplitudes for - 90° ˂ ɸ ˂ 90° and 0 ˂ q ˂ 1 

at resonance 1:2 
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