
Wang et al. 2018. Int. J. Vehicle Structures & Systems, 10(2), 150-159 
 

International Journal of  

Vehicle Structures & Systems 
Available online at www.maftree.org/eja 

ISSN: 0975-3060 (Print), 0975-3540 (Online) 

doi: 10.4273/ijvss.10.2.15 

© 2018. MechAero Foundation for Technical Research & Education Excellence 

 

150 

Exploring Intra-Urban Travel Mobility using Large-Scale Taxi Global 

Positioning System Trajectories 
 

Haixiao Wang
a
, Fang Liu

a
 and Jinjun Tang

b
 

aSchool of Energy and Transportation Engg., Inner Mongolia Agricultural University, Hohhot, China 
bSchool of Traffic & Transportation Engg., Central South University, Changsha, China 
Corresponding Author, Email: jinjuntang@csu.edu.cn 
 

ABSTRACT: 

Using taxi GPS trajectories data is of very importance to explore Spatio-temporal features of human mobility in 

transportation designing and planning. The data were collected from taxi GPS devices in Harbin city during a week. 
The taxi trips are extracted from GPS data, and travel distance and time in occupied and vacant states are firstly used 

to investigate the human mobility. Then, the urban area is divided into 400 grids. Furthermore, travelling network 

corresponding to taxi trips are designed to further examine the dynamics of mobility, in which the grid are considered 

as nodes and edge weights are defined as total number of trips among nodes. We observe some basic statistical features 

of network: degree, edge weights, clustering coefficients and network structure entropy. We also use the correlation 

between strength and degree to analyze the significance of nodes. Based on network analysis, we select two grids, a 

central business district and a residential district with high degree and strength, to study the spatial and temporal 

properties of trips that start from and end at these two grids. Finally, the correlation between trip volume and operation 

efficiency is explored and we find that hourly trip volume express negative correlation with operation efficiency. 
 

KEYWORDS: 

Urban mobility; Taxi GPS trajectories; Travel time; Travel network; Spatial-temporal property 
 

CITATION: 

H. Wang, F. Liu and J. Tang. 2018. Exploring Intra-Urban Travel Mobility using Large-Scale Taxi Global Positioning 

System Trajectories, Int. J. Vehicle Structures & Systems, 10(2), 150-159. doi:10.4273/ijvss.10.2.15. 
 

1. Introduction 

Urban travel behavior reflects general moving regularity 

of citizens, and it is an important factor to evaluate the 

rationality of city structure and planning. Thus, deep 

exploring traveling characteristics is significant to 

improve urban planning and enhance people living 

quality. From the aspect of transportation, analyzing the 

patterns of travel behavior can help researchers and 

agency to understand OD (Origin and Destination) 

distribution in urban city and it is also beneficial to road 
network planning, public transit planning and traffic 

management. Researchers from different research fields 

implement applications to understand human mobility, 

such as spread of diseases [1], city planning [2], traffic 

engineering [3], financial market forecasting [4], and 

economic well-being [5]. In all these applications, 

various data sources are used to analyze human mobility 

including e-mail [6-7], network traces [8], GPS data 

from floating cars [9-10], mobile phone data [11-12], 

banking notes [13], social media check-in data [14] and 

smart subway fare card [15]. 
Residents’ travel rely on a certain transportation 

tool. In the city, taxis undertake large part of travel 

because of its flexibility. For its convenient, comfortable 

and fast, the taxi is frequently treated as an ideal traffic 

tool to complete long-distance travel in urban area. 

Meanwhile, in order to effectively supervise real-time 

operation status of taxi vehicles, GPS devices are 

equipped to collect taxi temporal and spatial information. 

This information provides us rich data resources to 

discover spatial-temporal patterns of travel behavior, hot 

spots analysis and even OD distribution. Thus, 

comparing with traditional data collection approaches, 

such as questionnaire or artificial counting, taxi GPS and 

status data can accurately reflect traveling features of 

passengers. Recently, abundant researches are conducted 

to study urban human mobility based on taxi GPS 
trajectories [16-25]. Liu et al [16] reported the distance 

distribution follow the truncated power-law function 

using mobile phone data and taxi GPS data, respectively. 

Liang [17] explored an exponential function to fit 

the displacements of taxi trajectories. Qian et al [18] 

studied urban dynamics using the taxi GPS data in New 

York City, and they contributed two findings as follows: 

applied two-step clustering method to recover trip 

pattern; used an exponential distribution to fit trips 

patterns. Qi et al [19] explored the relationship between 

the taxi passengers travelling characteristics and social 
function. Liu et al [20] analyze city spatial structure 

features of Shanghai city using taxi data. Castro et al 

[21] explored human mobility from taxi location 

information. Through integrating mobile phone and taxi 

data together, Kang et al [22] explored human 

movements in Singapore. They also compared the 

difference between human mobility patterns from two 

data source. Sagarra [23] proposed a super sampling 

method to estimate mobility based on an entropy 
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maximization procedure using taxi data in the New York 

City. They also used a network-based metrics to predict 

vehicle flows.  

Liu et al [24] analyzed urban spatial travelling 

behavior using GPS traces from 3000 taxis. Based on 

taxi GPS traces in the Lisbon City, Veloso et al [25] 

analyzed spatio-temporal variation of taxi services and 

behaviours. The purpose of this study is to analyze 

human mobility using taxi GPS data collected in Harbin 
city. The travel distance and time of trips are firstly used 

to explore the human mobility. Then, we build travel 

networks corresponding to taxi trips on different days, in 

which the girds are treated as nodes, and trips between 

grids are regarded as edges. Furthermore, some 

statistical quantities are calculated to uncover the 

dynamics of human mobility and hot spots in urban city. 

Finally, we further discuss spatial distribution of trips in 

several specific hot spots. 

2. Data description 

2.1. Data source 

The total number of taxis was about thirteen thousands 

of Harbin fleet in 2012, and there were around one 

hundred taxi companies in Harbin city. The daily 

average travel per taxi reaches to approximately 330 

kilometres. The taxi GPS data were collected in a week 
from 1st to 7th August in 2012. The data are recorded at a 

rate of 30 seconds, and total samples are 2880 in one 

day. Each data sample includes 7 attributes: Taxi ID, 

time, latitude, longitude, speed, orientation and status, 

which are shown in Table 1. 

Table 1: Data structures, Date 2012/8/1 

Taxi ID Time Latitude Longitude 

100300002 6:59:00 45.740090 126.619156 

100300002 6:59:30 45.738384 126.616920 

100300002 7:00:00 45.736588 126.614845 

100300002 7:00:30 45.736557 126.614820 

100300010 11:08:00 45.756557 126.604000 

100300010 11:08:30 45.757168 126.604280 

100300010 11:09:00 45.759000 126.605290 

100300010 11:09:30 45.759712 126.605644 

Taxi ID Speed Orientation Status 

100300002 38 112 0 

100300002 35 109 0 

100300002 29 110 0 

100300002 30 70 0 

100300010 45 10 1 

100300010 40 8 1 

100300010 33 12 1 

100300010 37 13 1 
 

2.2. Data analysis for travelling status and profit 

Fig. 1 shows the location data of thousand drivers on 

Aug. 1st, the trajectories almost cover the road network 

in Harbin. Aim to detect the interesting points, an 

important data should be utilized: status records, which 

record the taxi is vacant or occupied. That is the changes 

of status mean the drivers send a passenger to goal 

successfully or they just take a new passenger. This 
information is helpful to recognize hot spots. Fig. 1(a) 

shows the percentage of three statuses of all the drivers 

on Aug. 1st. The percentage of occupied by passengers 

reaches to about 45%, there are nearly 19% of time the 

drivers are roaming on the road to find passengers, and 

about 36% of time the vehicle is parked without driving 

data. Fig. 1(b) displays the variation of average 

percentage for three statuses in 24 hours. From 23:00 pm 

to 6:00 am, the percentage of parked is much higher than 

the other two statuses. In 3:00 am, its value reaches to 

the peak point, and percentages of non-occupied and 
parked drop to their lowest point. From 7:00 am to 22:00 

pm, the percentage of occupied tends to higher than the 

other two statues. 
 

 

(a): Trajectory distribution for around one thousand taxi vehicles 

in a day 

 

(b): Percentage of three statuses 

 

(c): Average percentage of three statuses in hours 

Fig. 1: Trajectory distribution and statistical comparison 

Fig. 2(a) shows the density distribution between the 

cruising distance and fare distance per unit time on Aug. 

1st. As we can see, most of drivers are profitable, see the 

hot kernel on the bottom. The fare distance per unit time 

are higher than that of the cruising distance, this means 

these drivers only cruise few to pick up next passenger. 
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However, some driver’s profit is low, they need cruise 

more than the majority. The last part of drivers who 

cruise less can earn more than the majority. These 

drivers are experienced. When they drop off a passenger, 

they directly head for the places with higher probability 

to pick up a passenger based on their experience rather 

than randomly cruise around drop-off locations. Fig. 2(b) 

presents the proportion distribution of drivers with 

different profit level. The cumulative percentage to 
classify all the drivers into low, medium and high profit 

is shown in Fig. 2(c). The top 15% are considered as 

high-profit-level drivers, the bottom 15% are considered 

as the low-profit-level drivers and the rests drivers are 

the medium-profit-level part. The fare distance per unit 

time of low part is lower than 4m/s, the profit range of 

the medium part starts from 4m/s to 6.2m/s, the profit of 

high parts is higher than 6.2m/s. 
 

 

(a): Density scatter of profit between cruising and fared trips 

 

(b): Distribution of profit 

 

(c): Cumulative percentage of profit 

Fig. 2: Density scatter and statistical distribution of profit 

3. Human mobility based on taxi 

trajectories 

Taxi trips are extracted from GPS dataset. As we 

aforementioned, there are two states in operation process 

of taxi drivers: load up passengers or occupied and 
vacant or non-occupied. For trips in different states, we 

calculate travel distance and time respectively. For the 

dataset in occupied state, Ro = (k, lo, τo), it includes the 

location information lo at time period τ for taxi k, and lo 

= (xo, yo) indicates longitude and latitude information. 

Similarly, Rn = (k, ln, τn) and ln = (xn, yn) express the 

dataset in occupied state. The travel distance can be 

calculated as, 

1

1

1

N

i i

i

d l l






      (1) 

Where N means the total no. of data samples in a unique 

trip on different states, “| |” indicates the Euclidean 

distance between two adjacent locations. The trip travel 

time can be defined as, 

1Nt         (2) 

Where N indicates the total no. of data samples in a 

unique trip on different states, τ1 and τN represent the 

starting and ending time. In order to compare different 

distribution of travel time and distance in weekday and 

weekend, we eventually collect 31823 and 31828 trips 

on weekday (Aug. 1st) for occupied and vacant states. On 

weekend (Aug. 4th), we collect 33228 and 33232 trips for 

occupied and vacant states respectively. 

3.1. Travel distance 

In this section, we calculate the frequency distribution of 

travel distance and fit its probability p(d) distribution 

under double logarithmic scale in Fig. 3. From the 

observation of the Fig., the trips collected from different 

days, weekday and weekend, express similar travel 

distance distribution. However, distance distribution in 

two states, occupied and non-occupied, exhibits 

obviously different patterns In Fig. 3a, the p(d) of 

occupied trips firstly increases gradually to the peak, and 

then it descends in the travel distance range from 3km to 

30km. The distribution of p(d) can be fitted by a power-
law function for the first part: 

( )p d d 
     (3) 

Also, the second part can be fitted by truncated power-

law function: 

( ) dp d d e   
    (4) 

All the parameters and indicator to evaluate the fitting 

performance (coefficient of determination: R2) are 

shown in Table 2. The p(d) of vacant trips decreases 

gradually in the travel distance range from 0 to 30km. 

We can observe the frequency value of short distance is 

relatively higher than that of long distance. It indicates 

the roaming area for the vacant taxi is limited in a small 

range to decrease travel distance or time for finding next 

passenger to maximize their profit. The distribution is 

fitted well by a truncated power-law function. The 

parameters are shown in Table 1. The similar results can 
be concluded in Figs. 3(c) & 3(d) and Table 2. 



Wang et al. 2018. Int. J. Vehicle Structures & Systems, 10(2), 150-159 

153 

  

(a): Occupied state (b): Vacant state 

  

(c): Occupied state (d): Vacant state 

Fig. 3: Trip distance distribution and fitting results of trips 

Table 2: Fitting parameters for travel distance and travel time distribution 

Travel distance 

Status Day of week Fitting parameters 

Occupied 

 Power law Truncated power law 

Weekday μ =0.017;λ=0.797;R2=0.988; α =0.128;β=0.553;γ=0.197;R2=0.966 

Weekend μ=0.018;λ=0.693;R2=0.943; α=0.175;β=0.751;γ=0.195;R2=0.962 

Non-occupied 

 Truncated power law 

Weekday α=0.055; β=1.204; γ=0.134; R2=0.965 

Weekend α=0.062; β=1.155; γ=0.148; R2=0.953 

Travel time 

Status Day of week Fitting parameters 

Occupied 

 Power law Truncated power law 

Weekday μ=0.013;λ=0.746;R2=0.955; α=2.701;β=1.536;γ=0.022;R2=0.985 

Weekend μ=0.012;λ=0.812;R2=0.958; α=6.108;β=1.848;γ=0.021;R2=0.978 

Non-Occupied 

 Truncated power law 

Weekday α=0.312; β=1.251; γ=0.021; R2=0.973 

Weekend α=0.341; β=1.243; γ=0.022; R2=0.968 
 

3.2. Travel time 

Compare with travel distance, travel time reflects actual 

traffic statues in road network. The frequency and 

probability distribution are computed with different 

states on weekday and weekend in Fig. 4. The p(t) of 

occupied trips firstly increases gradually to the peak, and 

then decreases in the travel time range from 9 to 100 

min. For the 1st part of the trips, The distribution of p(d) 

can be fitted by a power-law function for the 1st part, 

( )p t t
     (5) 

The 2
nd

 part can be fitted by truncated power-law 
function, 

( ) tp t t e   
    (6) 

All fitting coefficients are displayed in Table 2. The p(t) 

of vacant trips decreases in the travel time range from 0 
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to 100min. The distribution is fitted by a power-law with 

exponential cut off. For the trips collected on weekend, 

the distribution and coefficients are shown in the Figs. 4c 

& 4d and Table 2. Different with the results in [13, 26, 

27] reported that the travel distance can be fitted well by 

power-law function from cell phone communication 

data, our study shows travel distance and travel time of 

occupied trips express a hybrid patterns. The reason 

includes following two aspects: (1) The travelling space 

of taxi vehicle is limited by the size of city and the 

structure of road. (2) The economic factor is another 

important condition for the passengers. In summary, as a 

significant tools for traveling, taxi vehicle expresses its 

own advantages and disadvantages. . The trips extracted 

from taxi GPS traces behave unique characteristics to 

explore human mobility and improve transportation 

planning. 

 

  

(a): Occupied state (b): Vacant state 

  

(c): Occupied state (d): Vacant state 

Fig. 4: Travel time distribution and fitting results of trips 

4. Dynamics in travelling network 

4.1. Network based on traveling trips 

In this section, we design two travel network from the 

data recorded on weekday (Aug. 1st) and weekend (Aug. 

4th). The main land of Harbin city is divided into 400 

grids. Each grid covers the land area of 0.075 

(longitude) × 0.005 (latitude). The grid is treated as 
node, and the trips connecting two nodes are treated as 
edges. Accordingly, we construct weekday travel 

network (WDTN) and weekend travel network (WETN) 

with both 400 nodes and 25006 and 25920 edges 

respectively. Some statistical properties are shown in 

Table 3. The degree is the no. of edges for a node 

connects with other nodes. From the observation of 

quantities in Table 3, we can see that WDTN and WETN 

express similar structure, and in the networks, a large 

amount of nodes only share small number of all the 
edges. Furthermore, the entropy is applied to evaluate 

the structural feature. The entropy is a central role in the 

information theory and be used to measure the 

uncertainty [28]. In term of the definition of NSE, when 

the value of EN is small, the network has good 

connectivity. When the value of EN is high, it means the 

network is divided into several local network and no. of 

nodes are not connected with the others. For the 

weekday, EN = 0.831, and for the weekend EN = 0.818. 

Furthermore, the average shortest path length of a 

network is defined as [29], 

, ,

1

( 1)
ij

i j N i j

L d
N N  





   (7) 

Where N means the total no. of nodes and dij represents 
the shortest path length between nodes i and j. The 

average shortest path length L is 2.389 for the WDTN. 
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For WETN, L is 2.527. A network with “small world” 

feature generally has a low average shortest path length 

and high clustering coefficients. However, two networks 

analyzed in this study don’t show “small word” property. 

The reason is that a lot of nodes cannot be directly 

connected, for the low clustering coefficients, this results 

in the increase of values of average distance within the 

network. Moreover, the values of EN for two 

corresponding networks are relatively high. This 
indicates the network is divided into different random 

local networks, and no. of nodes do not connect with the 

others. Thus, the high values of EN for two networks also 

indicate that two networks do not express “small word” 

features and the shortest distance among nodes become 

long, even sometimes be unconnected. 

Table 3: Statistical results of travel network for two days 

Day of 
week 

Statistical 
indicators 

Degree 
Edge 

weight 
Clustering 

coefficients 

Weekday 
Mean 125.03 0.3408 0.3919 

Standard 
deviation 

101.99 1.5465 0.1663 

Weekend 
Mean 129.60 0.3617 0.3990 

Standard 
deviation 

104.79 1.5677 0.1788 

 

4.2. Correlation between the strength and degree 

The strength of node i is defined as the sum for weights 

of edges which connect with it. As the networks 

designed in this study are directed and weighted, the 

strength can be further categorized into in-strength and 

out-strength. In-strength is the sum for weight of edges 

which link the node as destination, and out-strength is 

the sum for weight of edges which link the node as 

origin. They are denoted as: 

1

n
in

i ji ji

j

s a w


 
    (8) 

1

n
out

i ij ij

j

s a w


 
    (9) 

Where n means the no. of the nodes, wij expresses the 

weight of edge starts from node i to j, a is the adjacent 

matrix. Similarly, the degree can be also classified into 

the in-degree and out-degree in a network. In the 

complex network, the strength and degree are used to 

evaluate the significance of node from intensity and 

extent. The Fig. 5 shows the degree-strength correlation 

of two networks. The correlation between in-degree and 

in-strength, and the correlation between out-degree and 

out-strength both can be fitted by power law distribution. 

This results indicate the grids in urban city with wide 
communications express an important role in the 

networks. 

 

  

(a): Correlation between in-degree and in-strength (b): Correlation between out-degree and out-strength 

Fig. 5: Power-law distributions for the correlation between degree and strength 

5. Trips distribution for hot spots 

From the network-based analysis in above sections, we 

find that some nodes or grids play key role in 

transportation system. In this section, we focus on spatial 

and temporal property of trips that generated from and 

attracted to these grids. We choose two grids or nodes 

with high degree and strength as cases study. The first 

one is a Central Business District (CBD), and the second 

one is a Residential District (RD) in Harbin city 

(longitude from 126.63 to 126.6375 and latitude from 

45.7775 to 45.78). Figs. 6a & 6b shows the variation 
of trip volume in 24 hours during a week from Aug. 1 to 
Aug. 7 in 2012. The origin and destination in Fig. mean 

trips generated from and attracted to the selected grids. 

In business district, the volumes of origin and destination 

trips have similar distribution patterns, but after 20 pm, 

the volume of origin trips are significantly higher than 

that of destination trips, which indicates people leave the 

shopping center before it is closed. For the residential 

area, the no. of destination trips is obviously higher than 

that of origin trips during 10 to 12 am and 17 to 20 pm, 
as people generally come back home rather than travel 

outside in this time period. Figs. 6c & 6d shows hourly 

variation of operational efficiency in two grids. We 

define the rate of slope (r = distance/time) to characterize 

the operational efficiency of taxi vehicles, namely the 

traveling distance per unit time. Thus, the high value of 

rate r means high operational efficiency. From 1 am to 6 
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am, due to the traffic system be in a good condition, the 

efficiency of the taxi is significantly higher, then, with 

the increasing of traffic flow, the efficiency declines 

sharply and turns to be stable around r = 0.3. After 20 

pm, the efficiency increases again to a high level with 

relief of traffic congestion. 
 

  

(a): CBD (b): RD 

  

(c): CBD (d): RD 

Fig. 6: Trips volume and operational efficiency distribution of two grids in 24 hours 

Fig. 7 shows the correlation of the travel time and 

distance in two grids. We can see that the distance and 

travel time exhibit positive correlation, that is, as 

distance of trips increases, the trips travel time 

accordingly lengthens. Moreover, we adopt K-means 

algorithm to divide the samples into three clusters, and 

the nos. in the Fig. is the proportion of different 

categories. As we can see, more than 60% trips are short 
distance travel cluster, there are about 1/3 of all trips 

belong to the medium distance travel cluster, and less 

than 10% trips belong to long distance travel part. Fig. 8 

provides the spatial distribution of three clusters 

calculated from Fig. 7 in urban city area, and it also 

represents that the taxi, as an important transportation 

tool for urban travel, its traveling range is mainly limited 

in urban area. In the Fig., grid (9, 8) represents the CBD 

and grid (5, 9) means the RD in the study. In order to 

further evaluate the efficiency of taxi operation in time 

of day, we display the correlation between distance and 

travel time of grid (5, 9) or RD at different hours (here, 
we just show 8 hours in a day) in Fig. 9. We also define 

the rate of slope (r = distance/time) to characterize the 

operational efficiency of taxi vehicles, namely the 

traveling distance per unit time. Thus, the high value of 

rate r means high operational efficiency. 

In order to explore the correlation between trip 

volume and operation efficiency, we scatter 96 samples 

in the Fig. 10. (For each grid, we can obtain 24 hourly 

samples from origin or destination trips) due to the 

different no. of volume (shown in Fig. 6) in two grids, 

we normalize the trip volume into the range of [0, 1]. As 

we can see, these two variables display negative 

relationship. Most of trips efficiency distribute in the 
range of [0.3, 0.45]. Trips with low volume have high 

efficiency, as the volume increases, the efficiency is 

gradually reduced. From Fig. 6, we can see the 

distribution of trip volume and operation efficiency both 

express hourly variation patterns in 24 hours. Therefore, 

during peak hours, high traveling demand of citizens 

causes increase of taxi trip volume. Meanwhile, as traffic 

system is under the condition of high pressure during 

peak hours, the operation efficiency of taxi will be 

affected by variation of traffic states and tends to be in a 

low level. During the non-peak hours, low traffic 

pressure and low traveling demand will result in the 
decrease of taxi trip volume and enhancement of 

operation efficiency. 
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(a): Trips generated from CBD (b): Trips attracted to CBD 

  

(c): Trips generated from RD (d): Trips attracted to RD 

Fig. 7: Correlation between travel time and distance of trips in two districts 

  

(a): Trips generated from grid (9, 8) or CBD (b): Trips attracted to grid (9, 8) or CBD 

  

(c): Trips generated from grid (5, 9) or RD (d): Trips attracted to grid (5, 9) or RD 

Fig. 8: Spatial distributions of trips in two transportation zones 
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Fig. 9: Correlation between travel time and distance of trips in grid (5, 9) or RD for eight hours 

 

Fig. 10: Correlation between normalized trips volume and 

operational efficiency for two districts 

6. Conclusions 

In this paper, we analyze the human mobility using taxi 

GPS data. The distribution of taxi trips under occupied 

status express two patterns: increasing part and 

decreasing part. The curve of increasing part can be well 

fitted by power law function, and distribution of in 

decreasing part is fitted by truncated power law function. 

Furthermore, the city area is divided into 400 grids. 
Accordingly, we design two travelling network based on 

taxi traces recorded on weekday and weekend: weekday 

travel network (WDTN) and weekend travel network 

(WETN). By observing some basic statistical quantities, 

we find that two networks express similar structure. In 

order to analyze the importance of nodes in networks, 

the correlation between strength and degree is examined, 

and we find that the in-strength and out-strength of 

nodes have similar increasing pattern with the in-degree 

and out-degree. The structure information entropy for 

two networks indicates that the travel network have no 

small word property and the shortest distance between 

nodes become long, even sometimes be unconnected. 

Finally, taking two grids with high degree and strength 
as example, Central Business District (CBD) and 

Residential District (RD), we analyze the spatial and 

temporal property of trips that generates from and 

attracts to these grids. We find that trip volume express 

negative correlation with operation efficiency. 
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