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ABSTRACT: 

Fault Detection and Identification system (FDI) and Fault Tolerant Flight Control (FTFC) system are used to correct 
the faulty operation of an aircraft. Both FDIs and FTFCs have operational disadvantages due to their inherent 
limitation of fault source identification. This paper presents the design and implementation of a robust model reference 
fault detection and identification (MRFDI) system on a fixed-wing aircraft for identifying actuator fault, instrument 
fault and presence of any uncertainties. The proposed MRDFI fuses the real-time parameters and actuator feedback to 

combine the advantages of data driven and model reference FDI that makes robust fault estimation. The MRFDI system 
is implemented on a typical aircraft altitude hold autopilot simulation environment with a predefined fault scenario. 
The fault scenario includes a faulty elevator, a faulty skin-implantable sensor and wind gust as environmental 
uncertainty. The MRFDI performs logical analysis to detect fault using state-dependent real-time parameters and state-
independent skin implantable sensor. This two-step fault detection method makes MRFDI robust to any type of fault 
identification. The results show that the MRFDI detects and distinguishes faults in actuator, instrument and any of the 

listed uncertainties thrown by the environment accurately. 
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ACRONYMS AND NOMENCLATURE: 

vx velocity- x direction in m/s 
vy velocity- y direction in m/s 
q pitch rate in rad/s 

θ pitch angle in rad 
δe elevator deflection in rad 
δt throttle input in rad 

1. Introduction 

Fault-tolerant flight control (FTFC) and Fault detection 
and identification (FDI) are the most active research 

areas today. FTFC is applied on an autopilot system for 
successful resuming of aircraft operation after 
malfunctions. Faults or failures are defined as deviation 
in any one/more performance characteristics of the 
system to the corresponding input. FDI is used in FTFC 
for suitable corrective measures to prevent the system 

from further deviation which may lead to failure. FTFC 
takes corrective measures without implementation of 
FDI by estimating the deviation in demanded and 
attained aircraft performance.  

Most of the FTFC are functioning without FDI and 
employ a combination of different control methods. 

FTFC is experimented on twin-engine small aircraft 
(without implementation of FDI on-board) to recover 
faulty behaviour of aircraft by comparing variation in 
demanded and achieved attitude of aircraft [1]. FTFC 
generates suitable guidance commands using inner loop 
(acceleration data) and outer loop (attitude data) 

feedback controller. The fault scenario executed includes 
propulsion only mission (all actuators failure), loss of 
25% and 50% wing during mid-flight and injected time 
delay. They successfully demonstrated the operation of 
FTFC within conservative altitude limit. It was also 
explained that the absence of FDI limits the functionality 

of FTFC due to a conservative altitude limit. Further, it 
was also suggested that if the FDI was implemented 
within the system, FTFC would overcome this 
limitation. The system identification of a damaged 
aircraft was demonstrated using wind tunnel experiments 
and by real flight tests [2] and [3]. They also explained 

that the method was based on the reallocation of 
dynamical model of normal flight condition to faulty 
condition during the corresponding fault. 

Trimmable Horizontal Surface (THS) was 
developed to demonstrate FTFC on a commercial 
aircraft model [4]. The assumptions made were that the 

elevator equipped with another small elevator surface 
(trim) and fault scenario as the malfunction in main 
elevator actuator. They assumed feedback of actuator to 
be an FDI. Also, presence of the uncertainty was not 
considered. Similar work was carried out with the 
presence of uncertain environment as wind gust [5]. 

They equipped their model with twin actuator 
configuration (primary elevator and secondary trim 
control in elevator). The uncertainty and disturbance 
estimator (UDE) was applied on FTFC based on 
nonlinear dynamic inversion. The control would be 

https://doi.org/10.4273/ijvss.10.5.14


Jaganraj et al. 2018. Int. J. Vehicle Structures & Systems, 10(5), 371-376 

372 

reallocated to secondary actuator during malfunction of 

primary control. They also assumed that the opposite of 
estimated disturbance could be used in FTFC to nullify 
the effect of disturbance. Further, they tested their 
system for wind gust uncertain condition (without 
actuator fault) by assuming healthy operation of primary 
control. However, the source of the fault was 

unaddressed and limited for instrument error. They also 
explained that the system assumed deviation in 
performance as the environmental uncertainty, if the 
fault was not found in primary actuator.  

FTFC is classified into active and passive control [6] 
and [7]. The passive FTFC requires fault detection, 

identification and control reconfiguration, whereas, the 
active method reacts to demands (faults) actively by 
reconfigurable control scheme. Various mathematical 
models and approaches for reconfiguration techniques 
were also discussed broadly. The fusion of Linear 
Quadratic Regulator (LQR) and Model Reference 

Adaptive Control (MARC) are applied on dissimilar 
redundant actuation system for flight control during 
faulty scenario [8]. This system used damaged aircraft 
dynamic model as control strategy. Research works were 
carried out for identifying dynamics of aircraft with 
structural failure. The aircraft stability was analysed for 

nonlinear region and equilibrium point was determined 
for icing condition and normal condition [9]. The 
simulated aircraft attributes (angle of attack, sideslip, roll 
rate, pitch rate and yaw rate) were modelled as functions 
of elevator defection. These attributes were compared for 
normal flight and icing flight condition. The variation in 

geometry of aircraft influenced in change of equilibrium 
point and the observations were presented. 

The controllability analysis of tandem quad-copter 
was carried out [10]. The adaptive control algorithm 
with actuator saturation is applied on numerical 
simulation. FDI scheme was developed to estimate fault 

using comparison of required attitude to the measured 
attitude [11]. The fault detection of air data sensor is 
developed by sensor fusion [12]. They estimated the 
fault based on comparison of state variables to identify 
sensor fault and it is robust to some extent, because of 
comparing state of air data sensor output to the aircraft 

response for detecting instrument only fault. So, the 
robust estimator requires real time parameter estimator 
and state-independent actuator/sensor feedback. The 
real-time parameters of aerodynamic model were 
estimated using artificial intelligence [13]. The method 
of system identification was explained briefly for a small 

unmanned aircraft [14]. The real-time parameter 
estimation of aircraft was carried out using recursive 
least square and batch estimation method [15] and 
minimized error in each model. System identification 
using subscale methods were explained for small flexible 
aircraft [16]. 

Many of the work done so far on FTFC focused on 
control reallocation to healthy components, employing 
additional secondary actuator and improving accuracy in 
FTFC. However, these methods are limited due to 
corresponding control saturation and challenge during 
the presence of any uncertainties in the operational 

environment or in a catastrophic failure. These situations 
include instrument measurement error, dynamical 

instability due to uneven wind pattern, control 

effectiveness and structural failure. 
FDI methods were operated by either data-driven or 

model reference approach for diagnosing fault [20]. 
Data-driven models use supervising of components, 
signals and processes. Model reference system uses the 
comparison of desired to the attained performance of the 

actual model and reference model. So far, FTFC has 
been implemented in two ways (1) Control reallocation 
with FDI and (2) Control by nullifying errors using 
proper control reallocation/corrective measures. FDI has 
been implemented by comparing input to the output or 
estimating error in actuator feedback. Most of the FDIs 

and FTFCs have inherent limitation in inadequate 
identification of actual source of malfunction. The 
robustness of FDI will improve the detection of fault and 
its source to overcome limitations of FTFC. 
Implementation of FDI scheme is required for the 
effective application of FTFC without any inherent 

chaos in control logic [1] and [3]. 
Many of the FDI methods use comparison of 

feedback of input with corresponding aircraft output to 
identify fault. However, both FTFC and FDI methods 
have a marked disadvantage due to their inherent failure 
in inadequate estimation of fault and its source. These 

methods have only considered variation in demanded 
output to the actual output and have monitored actuator 
health. These methods become ineffective when FTFC 
undergoes logical ambiguity during the presence of 
uncertainties. These uncertainties may happen even if 
aircraft has fully functional actuators and instruments. 

Hence a FTFC system does not serve well during 
uncertain operating conditions. These operating 
conditions make the FTFC to take faulty decision during 
reallocation of control or implementing corrective 
measures. Therefore, limitations of FTFC lie in improper 
estimation of a fault and its source.  

Present work is based on the motivation to 
overcome the limitations in FDI by developing a robust 
Model Reference Fault Detection and Identification 
(MRFDI) system to detect any fault and identify its 
source. The MRFDI uses skin implantable sensors to 
detect input uncertainty (actuator fault) followed by the 

logical identification of a source using sequential 
parameter estimation. Robust fault detection requires 
both state-dependent variables of an aircraft and state-
independent feedback of actuators so as to identify the 
fault source. The uncertainty in the environment 
influences directly on the dynamics and corresponding 

response of an aircraft. The MRFDI detects the fault 
followed by identification of its source with robust two-
step verification. Subsequently, MRFDI is successfully 
implemented on simulated aircraft dynamics for the 
robust detection of actuator fault, instrument fault and 
any instability in environment.  

Present study aims to develop MRFDI to detect and 
identify a fault and its origin to understand the behaviour 
of the system. This includes presence of any uncertainty 
thrown by the environment. MRFDI improves the 
redundancy in fault detection in all faulty situations 
include actuator fault, measurement fault and uncertain 

environment. FDI scheme is developed with two-step 
verification logic consist of comparison of state-
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dependent and state-independent aircraft attributes and 

hence considered to be robust. The MRFDI is applied on 
simulated altitude hold autopilot system. The real time 
parameter estimation is validated by base model 
parameters. The actuator feedback and parameters are 
analysed by MRDFI logic and a fault and its source are 
successfully identified. 

2. Aircraft system identification 

A longitudinal linearized aircraft mathematical model 
[17] is given by, 

BuAxx       (1) 

DuCxy       (2) 

Where Tq
z

v
x

vx ][   , Tq
z
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x
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x and x  are the velocity, acceleration response of the 

aircraft and u is the control input.  ,,, q
z

v
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v  are 

acceleration in direction x, direction z, rate of pitch rate 
and rate of pitch angle respectively. ,,, q

z
v

x
v  are 

velocity in direction x, direction z, pitch rate and pitch 

angle. te  ,  are the elevator and throttle control input. A 

and B are the unknown parameters of stability and 

control derivatives of the aircraft. D and C are the output 
matrices. System identification technique is used to 
estimate the unknown parameters. Typical B747 aircraft 
parameters (values of A and B) are applied on Eqns. (1) 
and (2). An altitude hold autopilot is developed to 
simulate longitudinal altitude hold autopilot system [18]. 

The altitude hold autopilot system is shown in Fig. 1. 
 

 

Fig. 1: Alti tude hold autopilot for system identification of aircraft 

The altitude reference value is given as 475m from 
50s to 250s and 750m from 300s to 500s. The altitude 
hold autopilot estimates required correction for elevator 
and throttle to maintain the given reference altitude and 

velocity. This estimation is using the feedback from the 
aircraft altitude and velocity. The pitch and altitude 
controller generates the corresponding elevator and 
throttle commands to compensate the altitude and 
velocity correction. Fig. 2 shows the results of the 
autopilot system. Fig. 2(a) shows the velocity (vx), the 

angle of attack () and pitch angle (). The results 
shown in Fig. 2(b) explain that the aircraft is following 
the reference path given to the autopilot. Fig. 2(c) shows 
that the autopilot system generates input commands of 
an elevator (δe) and throttle (δt). Mathematical 

approaches for system identification problem are well 
established [20]. One of the simplest and reliable 
approaches is the least square (LS) method [16]. 
 

 

Fig. 2: Flight path of al titude hold system 

The simulated inputs and outputs are given by, 

T
zx qvvx ][ 

 X Y      (3) 

X) -(YTX) -(Y ½=J      (4) 

-1X)T(X )T(YX=     (5) 

Where Y is the output of the system and X is the input of 
the system. The unknown parameters are   and it can 

be estimated from Eqn. (5) using LS method. The inputs 

of X are T
zx qvvx ][    and outputs of Y are  

J in Eqn. 4 is the cost function of errors.  To minimize 
the cost function, the gradient is equated to zero resulting 

in Eqn. (5). The parameters A and B are estimated by LS 
method for B747. The estimated parameters are 
compared with base line parameters of B747. The values 
of B747 base line parameters (base) and simulated 
parameters (LS) are given in Table 1. 

Table 1: Comparison of baseline parameter with estimated (LS) 

parameters of A 

A1j 
Base -0.00687 0.01394 0 -9.81 

LS -0.00687 0.01394 0 -9.81 

A2j 
Base -0.09050 -0.31491 235 0 

LS -0.09050 -0.31491 235 0 

A3j 
Base 0.00039 -0.00336 -0.428 0 

LS 0.00039 -0.00336 -0.428 0 

A4j 
Base 0.00000 0.00000 1 0 

LS 0.00000 0.00000 1 0 

 

The base parameter estimation model is then 

converted into sequential parameter estimation by, 

-1
1N

T
1N

T
!N1N1 )X(X )X(Y= N   (6) 

Where N denotes the N
th

 second of experiment data [15]. 
This sequential identification simultaneously adds new 
experiment data to the existing experiment data of xx,  

are given by, 

]  x[x = 1NN1 NX     (7) 

]y  [y = 1NN1 NY     (8) 

The simulated inputs and outputs are applied on this 
sequential least square (SLS) estimator and parameters 
are obtained for each experimented data. To validate the 
convergence of parameters, values of Ab11 (first element 
of matrix A - base line model) and A11 (first element of 

actual model matrix A) are given in Table 2. The 
parameters are converged with initial error as the 
sacrifice to achieve real time parameter [15]. The results 
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are analysed for time taken to attain steady state. Fig. 

3(a) shows that the steady state is attained after 3s. 
 

 

Fig. 3: Flight convergence of parameters (SLS) 

Table 2: Comparison of baseline parameter with sequential LS 

before and after 3s 

Base line 

(Ab11) 

LS  

(A11) 

SLS  

(before 3s, A11) 

SLS  

(after 3s, A11) 

-0.00687 -0.00687 0.23428 -0.00687 

3. Development of MRFDI 

MRFDI is developed by cloning the autopilot model. 
The base autopilot model block modified by adding 
reference model block as shown in Fig. 4. The actual 
model is assumed to be a real aircraft and the reference 
model to be a mathematical model of real aircraft. 
Generally, this model reference approach is used as a 

control scheme in FTFC. This study utilizes this model 
reference for FDI. The altitude and velocity reference 
command are common for both actual and reference 
model. To simulate the fault, predefined actuator fault 
(in this case elevator) is injected during mid-flight to the 
actual model from 350s to 360s as constant increment 

with actuator input as shown Fig. 5. 
 

 

Fig. 4: Model reference system 

 

Fig. 5: Elevator input with fault injection 

To identify fault in actuator, skin implantable sensor 

is modelled as feedback of actual model elevator input. 
In real time, skin implantable sensor measures actuator, 
output and transmit data as feedback of actuator. The 
influence of fault injection on actual model is shown in 
Fig. 6. As the error enters into the actual system during 
mid-flight, the results show that aircraft altitude deviates 

from reference altitude. The SLS method is applied on 
actual model and reference model to get parameters. The 
identified parameter convergence of a11 (actual model) 
and A11 (reference model) is shown in Fig. 3. 
 

 

Fig. 6: Flight path variation with faulty elevator at 350s 

4. FDI framework 

The fault detection and identification scheme used in 
MRFDI framework logically analyses the actuator 
feedback and parameters of actual and reference model. 

The model similarity in actual and reference model is 
used to develop fundamental architecture of MRFDI. 
The developed MRFDI system is shown in Fig. 7 and its 
logical scheme is given in Table 3.  
 

 

Fig. 7: Model reference FDI 

The MRFDI consists of skin implantable sensor to 
detect fault in actuator. This sensor measures the actual 
deflection of control surface to the corresponding control 
input. In this work, the skin implantable sensor is 
modelled as feedback of elevator input. This feedback 

system works as virtual skin implantable sensor to 
supervise control input to the actual model. The MRFDI 
compares the parameters of actual model with reference 
model parameters and shows error flag value as 1, if any 
variation found in parameters. Similarly virtual skin 
implantable sensor error flag value as 1, if any variation 
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found in actuator input. MRFDI logically check the flag 

values of parameter error and actuator error as given in 
Table 3. The detection and identification follow the logic 
in Table 3 for robust estimation of fault and its source. 

Table 3: MRFDI scheme for robust fault tolerant 

Skin implant-
able sensor 

Variation in 

actual and 
reference 

parameter 

Actuator 
fault 

Instrument 
fault 

Environ. 
uncertainty 

1 0 0 1 0 

1 1 1 0 0 

0 1 0 0 1 

0 0 0 0 0 

5. Results and discussions 

The following fault scenarios were simulated using 
MRFDI system: 

 Case 1 - Elevator fault during 350s of flight 

 Case 2 - Virtual skin implantable instrument fault 

during 350s 

 Case 3 - Wind gust during 350s 
For Case 1, the actual model input is added to the 
constant increment to simulate the error during 350s. 

SLS method was employed on actual and reference 
model to get real time parameters. The actuator feedback 
and real time parameters were analysed by MRFDI fault 
detection algorithm using the values given in Table 3. 
Fig. 8 shows the comparison made by MRFDI. It verifies 
the parameter a11 and A11 of actual model and reference 

model to estimate error in parameters as shown in Figs. 
8(a) and 8(b). The variation of parameters shown in Fig. 
8(c) confirms that the fault occurred during 350s.  
 

 

Fig. 8: Comparison of parameters of actual and reference model  

 

Fig. 9: Case 1 - Es timation of actuator  fault 

The MRFDI verifies the logic given in Table 3 and 

estimates a fault as flag value ‘1’ as shown in Fig. 9. The 
skin implantable sensor output of actual model detects 
the actuator failure during 350s of the flight. Finally 
MRFDI estimates a fault source as actuator error. The 
MRFDI fault detection result for Case 1 simulation is 
shown in Fig. 9. The MRFDI detects the parameter 

variation as shown in Fig. 9(a) and then a source as 
actuator fault as shown in Fig. 9(b). Fig. 9(c) and 9(d) 
show that the fault is not occurred due to instrumental 
fault and uncertain environmental effect. 

For Case 2, the error is simulated by adding constant 
increment error to virtual skin implantable sensor 

(actuator feedback) during 350s. Like Case 1, Case 2 
also begins with comparison of parameters followed by 
error flag estimation using Table 3 logic. The results are 
shown in Fig. 10 for Case 2 simulation. Since the error is 
injected only at virtual skin implantable sensor, the 
MRFDI detects no variation in parameters as shown in 

Fig. 10(a). Fig. 10(b) shows that the MRFDI detects 
actuator fault and identifies that the actual reason for 
error as instrument fault as shown in Fig. 10(c). 10(d) 
shows that the fault was not occurred due to uncertainty.  
 

 

Fig. 10: Case 2 - estimation of instrument fault 

 

Fig. 11: Case 3 - Estimation of dynamical instability / identification 

of catastrophic failure  

For Case 3, the error is simulated by adding a 
constant increment with velocity during 350s as a wind 
gust. Since no error has occurred at actuator and actuator 
feedback system, Fig. 11(b) and 11(c) show no variation 
in actuator and actuator feedback. Fig. 11(a) shows a 
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variation in parameters. Fig. 11(d) shows the presence of 

an uncertain environment. The results of Case 3 confirm 
that the fault occurred due to a wind gust and reflections 
are observed only at parameters. 

6. Conclusion 

An MRFDI scheme is developed to identify and 
distinguish the nature of fault. A typical aircraft 
mathematical model is developed along with altitude 

hold autopilot for applying MRFDI. The estimated 
parameters are validated using least square and 
sequential least square method. The developed MRFDI 
demonstrated the capability to successfully detect and 
identify the fault along with its source for a predefined 
scenario, in a simulated environment. The results also 

confirmed that the developed MRFDI is robust in nature 
and capable of identifying actuator fault, instrument fault 
and dynamic instability. Coupled with an MRDFI for 
fault tolerant flight control, MRFDI will prove a 
potential system in flight operation and control. 
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