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ABSTRACT: 

This article presents Meshless Local Petrov-Galerkin (MLPG) method to obtain the numerical solution of linear and 

non-linear heat conduction in a semi-infinite solid object with specific heat flux. Moving least square approximants are 

used to approximate the unknown function of temperature T(x) with Th(x). These approximants are constructed by using 

a linear basis, a weight function and a set of non-constant coefficients. Essential boundary condition is imposed by the 

penalty function method. A predictor-corrector scheme based on direct substitution iteration has been applied to 

address the non-linearity and two-level  method for temporal discretization. The accuracy of MLPG method is verified 

by comparing the results for the simplified versions of the present model with the exact solutions. Once the accuracy of 
MLPG method is established, the method is further extended to investigate the effects of temperature-dependent 

properties. 
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ACRONYMS AND NOMENCLATURE: 

A Across-sectional area of fin, m2 

c Reference heat capacity, J/kgC 

k0 Reference thermal conductivity, W/mC 
k(T) Temperature- dependent thermal conductivity, 

k0 (1+βT) 

L Length of object, m 

n Direction cosines pointing outward to the 

boundary 

P Perimeter of an object, m 

q  Heat flux, W/m2 

Ti Initial temperature, C 

T  Specified temperature on essential boundary,C 

Th (x) Moving Least Squares (MLS) approximant 

v Test function for MLPG method 

∆t Time stepping, sec 

α Penalty parameter 

β Coefficient of thermal conductivity of the 

material, / C 
Γ Boundary of global domain 

Γ1 Essential boundary 

Γ2 Natural boundary 

Γ3 Convective boundary 
δ Width of the object, m 

Ԑ Emissivity of the semi-infinite object surface 

ρ Material density, kg/m3 

σ Stephen- Boltzmann constant, (5.67 × 10-8 

W/m2-K4) 

( )I x  MLS shape function 

1. Introduction 

A semi-infinite solid is an idealized body that has a 

single plane surface and extends to infinity in all but one 

direction. If a sudden change is imposed to this surface, 

transient 1D conduction occurs in the solid. The semi-

infinite solid provides a useful idealization for many 

practical problems. It may be used to determine the heat 

transfer near the surface of earth over the period of time 

or to approximate transient response of a finite solid, 

such as a thick slab. No object is semi-infinite although 
many approach this limit as the earth. Furthermore, it 

can be seen that every object is essentially semi-infinite 

with respect to surface processes that occur over a 

sufficiently small time scale. A number of engineering 

and science problems can be modelled as linear and 

nonlinear heat transfer in semi-infinite medium. These 

problems have been addressed by various analytical 

methods including Hankel and Fourier transformation, 

Separation of variables, Duhamel’s theorem, Greens 

function, Laplace transformation, integral method and 

similarity transformation [1-4]. But, real engineering 

problems, in general, are nonlinear in nature.  
A heat conduction problem becomes nonlinear 

either due to nonlinearity of the differential equation or 
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boundary conditions or both. Since there is no general 

theory available for solution of nonlinear partial 

differential equations, the analysis of such problems 

becomes difficult and each problem should be treated 

individually. Bianco et al [5] have identified the 

numerical solution for the transient heat conduction in 

semi-infinite solids irradiated by a moving heat source. 

Thermal conductivity is taken as temperature dependent. 

They have used COMSOL Multiphysics 3.3 code for 
investigation. Chang [6] have studied the behaviour of 

the semi-infinite solids under transient conditions by 

taking temperature dependent thermal properties. Singh 

et al [7] have conducted the analysis of unsteady-state 

heat transfer in semi-infinite solid with temperature-

dependent thermal conductivity using Element Free 

Galerkin (EFG) method. 

Yu et al [8] have identified the approximate solution 

of the nonlinear heat conduction equation in a semi-

infinite domain using Taylor polynomials of different 

degrees. They have taken thermal conductivity, material 

density and heat capacity as the function of temperature. 
Chambré [9] has studied the time-dependent heat 

conduction in a semi-infinite medium subject to a 

boundary condition which can involve the temperature in 

a nonlinear manner. A simple iterative solution method 

has been proposed. Badran and Abd-el-malek [10] have 

solved the nonlinear and transient heat conduction 

problem in a semi-infinite body using transformation 

group theoretic approach. Chung and Yeh [11] have used 

integral method to solve nonlinear transient heat 

conduction equation in a semi-infinite solid. Ceretani et 

al [12] have identified the explicit solutions for a non-
classical heat conduction problem for a semi-infinite 

strip with a non-uniform heat source using separation of 

variables method. 

To the best of authors’ knowledge, meshless local 

Petrov-Galerkin (MLPG) method has not been used to 

study the behaviour of semi-infinite objects. The MLPG 

method was developed by Atluri and Zhu [13-14]. 

Unlike FEM and most other meshfree methods, MLPG 

method operates on local weak form and performs 

integration over overlapping simple local domains. This 

has removed the need of mesh at any stage of analysis. 
Hence, it is truly a meshfree method. The method was 

further elaborated and developed by a few researchers 

[15-22]. They concluded that MLPG has a very high rate 

of convergence, it does not need any post processing 

technique and does not exhibit any volumetric locking. 

MLPG method works on Petrov-Galerkin formulation 

i.e. trial and test functions are selected from different 

spaces. This provides a large number of possible 

combinations to formulate MLPG method. 

In the present work, the MLPG method has been 

employed to obtain the numerical solution of nonlinear 

heat conduction in semi-infinite solids with temperature 
dependent thermal conductivity. The meshless 

formulation has been given for a model problem of non-

linear heat transfer. The results obtained by MLPG 

method are compared with those obtained by EFG 

method, established finite element (ANSYS 8.0) and 

analytical methods respectively. Moving least square 

(MLS) approximants are used to approximate the 

unknown function of temperature T(x) with Th(x).These 

approximants are constructed by using a linear basis, a 

fourth order spline weight function and a set of non-

constant coefficients. The MLPG method does not 

possess Kroneker delta function property as FEM; hence 

the essential boundary condition (EBC) is imposed by 

the penalty function method (PM). A predictor-corrector 

scheme based on direct substitution iteration has been 

applied to address the non-linearity and two-level  
method for temporal discretization. 

2. MLPG method 

The MLPG method operates on Petrov-Galerkin 

formulation i.e. it picks up test and trial functions from 
different function spaces. The original formulation [13-

14] has subsequently evolved in various versions either 

by changing the meshfree approximation scheme or by 

selecting a new test function. Hence, the proposed 

method provides a rational basis for constructing 

meshfree methods with a greater degree of flexibility. 

The discretization of the governing equation by the 

MLPG method requires MLS approximants which are 

made up of two components of a weight associated with 

each node, a monomial basis and a set of non-constant 

coefficients. The unknown function T(x) is 
approximated by moving least- square approximants Th 

(x). In 1D, for linear basis Th (x) can be written as, 

( ) ( ) ( ) ( ) ( )
1

mh TT p aj j
j

 


x x x p x a x

  (1) 

Where pT(x) = (p1 (x), p2 (x), pm (x)) is a complete 

monomial basis and m is the number of terms in the 

basis. For example, in 1-D space the basis can be, 

2

Linear basis:         ( ) {1,  },       2

Quadratic basis:    ( ) {1,  , },       3 

T

T

x m

x x m

 

 

p x

p x
 

The unknown coefficients aj(x) at any given point 

are determined by minimizing the functional J, 

2( )[ ]
1

I

n
J w TI

I
  



T
x x p (x)a(x)

  (2) 

Where n is the number of nodes in the neighbourhood of 

x for which the weight function ( ) 0w x xI  , and TI is 

the nodal parameter of T at x= xI. The stationarity of J in 
Eqn. (2) with respect to aj (x) leads to the following set 

of linear equations: 

1( ) Ta x A (x)B(x)
    (3) 

Where ( )
1

n
w I I I

I
 



TA(x) x x p(x )p (x )

 (4)

 

[ ( ) ,......., ( ) ]I Iw w n n  B(x) x x p(x ) x x p(x )
 (5) 

[ , , ... ]
1 2

T T T Tn
    (6) 

By substituting Eqn. (3) in Eqn. (1), the MLS 

approximants can be defined as, 

( )( )
1

x

nhT T TI I
i

  


x Φ(x)

   (7) 
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Where meshless shape function I(x)is defined as, 

 1( ) ( )
1

m
p jI jIj

  


x x A (x)B(x)

  (8) 

The derivatives of shape function is given by, 

1 1 1 1
) ( ) ( ), , , ,( T T T T

A B p A B p A B p A Bix I x x I x I I xp    
   

 (9) 

The weight function w(x- xi) is non-zero over a 

small neighbourhood of xI called the domain of influence 
of node I. The choice of weight function w (x- xi) affects 

the resulting approximation Th(xI), therefore the 

selection of appropriate weight function is essential. In 

this article the fourth order spline weight function is 

used. It is represented by, 

2 3 41 6 8 3 if  0 1
( )

0 if  1

d d d d
w

d

     
  


i

x x

              (10) 

3. Discrete equations 

One-dimensional governing equation for transient heat 

transfer in semi-infinite solids with temperature- 

dependent thermal conductivity is given by, 

[ ( ) ]
T T

k T c
x x t


  


                   (11) 

Where 0(T) (1 )k k T   

Initial and boundary conditions: 

 ( ,0)          on iT x T 
                (12) 

(0, )

( )
t

T
k T q

x

 
   

              (13) 

Where ( )
T

q k
n





and T are the specified temperature on 

essential boundary, q  is the given heat flux at the 

natural boundary and n is the outward unit normal to the 

boundary. MLPG method is based on local weak form. 

Weighted residual formulation for Eqn. (11) in local 

domain can be expressed as, 

{ [ ( ) ] } 0

Q

T T
v k T c d

x x t




  
  

  
            (14) 

Where, v is the test function. MLS weight function 

(MLPG 1) from [16] is employed in this study. Using 

divergence theorem, Eqn. (14) yields the desired weak 
form given by, 

Q

( ) - ( ) d 0

Q

T T v T
vk T k T v c

n x x t


 

      
           


       (15) 

Where 
Q  is the boundary of the local domain, Q  . In 

case of 1D problem, boundary integrals turn to be a point 

value on boundaries. Taking advantage of MLPG 
method’s flexibility, the test function is selected such 

that it vanishes at the boundary of the local domain. 

Hence, boundary integral remains non-zero only when 

local domain intersects the global boundary. The EBCs 

are imposed by PM, developed by Zhu and Atluri [23].  

 

Therefore, Eqn. (15) can be written as 

 
1Q1Q

( ) d 0

Q

T v T
qv k T v c T T v

x x t
 




                  


    (16) 

Where
1 1Q Q     and α is the penalty function 

parameter = 1 x 1010 and ( )
T

q k
n





 

The unknown function, T, at any instant of time t, is 

approximated by MLS scheme (Lancaster and 

Salkauskas [24]) as follows 

1

( )
sn

h

i i

i

T T


  x ΦT

                (17) 

WhereΦ is the vector of the mesh free shape functions

i , T represents the vector of nodal parameters Ti at 

time t and ns is the number of nodes in the support 

domain at point x. EBC is imposed by the method of 
direct interpolation. Substituting the approximation (17) 

in Eqn. (16) and performing integration over all local 

domains corresponding to all field nodes, the semi-

discrete system can be obtained as follows: 

 CT KT F                  (18) 

1

1

( ) d
Q

QQ

ji

ij i i j

v
K k T v v

x x n





   
            


         (19) 

d

Q

ij i jC cv


  
                (20) 

 
1 1Q Q

i i iF v q v T
 

    
                (21) 

Spatial discretization of governing PD Eqn. (11) 

results in a system of semi-discrete ordinary differential 

equations. Two- level  method for temporal 
discretization has been used. It can vary between explicit 

and implicit strategies and results in the algebraic system 

1[ ] [ ( 1) ]n nt t t       C K T C K T F
            (22) 

Where is the time step and n denotes the time level (i.e. 

tn= n t if uniform time step is employed). According to 

Morgan [25], nonlinear systems can be very 

complicated, if not impossible, to solve explicitly. The 

majority of nonlinear analysis of systems of ODEs 

focuses on whether or not the systems have stable 
equilibria. The equilibrium characterizes as stable or 

unstable based on the behavior of solutions whose initial 

conditions are in the neighborhood of the equilibrium. If 

solutions near a critical point of a system stay close to 

the critical point as time approaches infinity, the critical 

point is assumed to be stable. An iterative predictor-

corrector scheme [26], based on direct substitution 

iteration is used to handle nonlinearity in this work. This 

scheme proceeds in two steps. It calculates a rough 

approximation of the desired quantity in the first step 

and refines approximation in the next by any other 

means. It combines the advantages associated with 
explicit and implicit time schemes. Hence, it provides 

the stable solution to solve complex nonlinear problems. 
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Predictor: 

1

*( ) ( )

( ) (1 ) ( ) ( )

n n n

n n n n

t

t t





    

      

C X A X X

C X A X X B X
           (23) 

Corrector: 

1

1( ) ( )

( ) (1 ) ( ) ( )

n n n

p p p

n n n n

p p p

t

t t








    

      

C X A X X

C X A X X B X
      (24) 

Where p = 0, 1, 2, 3…up to convergence and 

1

1 1

0 *

(1 )        0  1n n n

p p

n n

w w w

 

    



X X X

X X
              (25) 

4. Results and discussions 

Numerical solution has been obtained for transient heat 

conduction in semi-infinite solids with specific heat flux. 

A model has been solved by using constant and variable 

thermal conductivities of the material. The thermal 

conductivity of the material is assumed to vary linearly 

with temperature. Consider a sample problem of 1D 

semi-infinite solid object as mentioned in the Fig. 1. The 

analytical solution for the mentioned boundary 

conditions can be obtained by following correlations 

[27] for constant heat flux, 

1/2 22 ( / )
( , ) exp

4 2
i

q t x qx x
T x t erfc T

k t k t

 

 

   
     

    

Where erf is the error function. erfc is the 

complementary error function, erfc w = 1- erf w. 

Table 1: Data for semi-infinite solid problem 

Parameter Value Parameter Value 

L 1.00 m c
 

400 J/kg 0C 

W 0.10 m k0 400 W/m 0C 

a 1 x 105 W/m2 Ti 00C 

ρ
 

9000 kg/m3 ∆t 1 sec 
 

 

Fig. 1: Semi-infinite model for transient heat transfer 

Case I: Constant thermal conductivity 

The thermal conductivity of the material is assumed to 

be constant i.e β=0 and hence k= k0. Number of nodes is 

taken as 51. Extant of quadrature and support domains 

are taken as 1.66 and 2.5 respectively. Table 2 shows a 

comparison of MLPG results and the results obtained by 

FEM, EFG and analytical methods respectively. The 
error in EFG, FEM and MLPG results has also been 

evaluated and presented in Table 2. The maximum error 

in EFG, FEM and MLPG has been found to be 24.27%, 

47.30% and 24.39% respectively. From the results 

presented in Table 2, it can be observed that EFG and 

MLPG results are more accurate than FEM results and 

furthermore MLPG results are in good agreement with 

the established meshfree EFG method. 

Table 2: Comparison of MLPG results with EFG, FEM and 

analytical method results at x= 0.00 m for constant thermal 

conductivity 

 Analytical EFG [7] FEM [7] MLPG 

T, 
sec 

T, 0C T, 0C 
% 

Error 
T, 0C 

% 
Error 

T,0C 
% 

Absolute 
Error 

 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 9.41 7.12 24.27 4.96 47.30 11.70 24.39 

20 13.30 11.67 12.27 9.04 32.04 15.05 13.15 

30 16.29 15.03 7.73 12.48 23.41 17.64 8.29 

40 18.81 17.76 5.57 15.43 17.95 19.83 5.43 

50 21.03 20.11 4.38 18.03 14.28 21.77 3.49 

60 23.04 22.21 3.60 20.34 11.71 23.51 2.06 

70 24.88 24.13 3.03 22.44 9.84 25.12 0.95 

80 26.60 25.90 2.63 24.36 8.44 26.62 0.07 

90 28.22 27.56 2.33 26.14 7.37 28.03 0.67 

100 29.74 29.12 2.09 27.80 6.53 29.36 1.29 
 

Case II: Variable thermal conductivity  

In case of variable thermal conductivity, it is assumed 

that thermal conductivity of the material is varying 

linearly with temperature i.e. k= k0 (1+βT). Number of 

iterations is taken as less than 10. Table 3 shows a 

comparison of MLPG results with obtained by FEM, 

EFG and analytical methods respectively. The error in 

EFG, FEM and MLPG results has also been evaluated 

and presented in Table 3. The error in EFG, FEM and 

MLPG results has also been evaluated and presented in 

Table 3. The maximum error in EFG, FEM and MLPG 
has been found to be 25.83%, 48.36% and 22.15% 

respectively. It is evidential that MLPG results are more 

accurate than EFG and FEM results.  

Table 3: Comparison of MLPG results with EFG, FEM and 

analytical method results at x= 0.00 m for variable thermal 

conductivity 

 Analytical EFG [7] FEM [7] MLPG 

T, 
sec 

T, 0C T, 0C 
% 

Error 
T, 0C 

% 
Error 

T,0C 
% 

Absolute 
Error 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 9.60 7.12 25.83 4.96 48.36 11.73 22.15 

20 13.56 11.65 14.08 9.04 33.37 15.09 11.29 

30 16.60 14.99 9.67 12.47 24.88 17.70 6.63 

40 19.15 17.70 7.58 15.42 19.49 19.90 3.92 

50 21.40 20.03 6.41 18.01 15.87 21.85 2.09 

60 23.43 22.10 5.67 20.31 13.33 23.62 0.78 

70 25.30 23.99 5.17 22.39 11.49 25.23 0.26 

80 27.03 25.74 4.80 24.30 10.11 26.74 1.07 

90 28.66 27.37 4.52 26.07 9.05 28.16 1.74 

100 30.20 28.90 4.30 27.72 8.22 29.51 2.30 
 

Temperature-time history of a semi-infinite solid at 

three consecutive nodes is presented in Fig. 2. Thermal 

conductivity varies linearly with temperature, number of 
nodes in the computational domain are taken as 151, 

time stepping of 5 sec, extant of quadrature domain as 

1.32 and that of support domain as 2.5 respectively. The 

heat conduction is investigated for three different values 

of β. It is found that temperature increases with time due 
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to low initial temperature and constant heat flux on the 

boundary. Constant temperature profile is close to that of 

analytical solution but as the value of β increases the 

nonlinear temperature profile parts away from the other 

profiles and reaches to the highest temperature. This is 

because the variable thermal conductivity is a linear 

function of the difference between the temperatures of 

surface and the sink. At high values of β, the thermal 

conductivity of the material decreases and hence the heat 
transfer. 
 

 
At X=0.00m 

 
At X=0.10m 

 

At x=0.20m 

Fig. 2: Temperature gradient at x=0.00 m, 0.10 m and 0.20 m  

5. Concluding remark 

In this paper, MLPG method has been successfully 

implemented to solve nonlinear heat transfer in semi-

infinite solids. A model problem has been solved by 

taking constant and temperature-dependent thermal 

conductivities with specific heat flux. The thermal 

conductivity of the material is assumed to vary linearly 

with temperature. For the linearization of nonlinear 

system of equations, predictor-corrector scheme has 

been used successfully and two level theta method for 

temporal discretization. The MLPG results have been 

obtained for linear and nonlinear system of equations 

and are compared with those obtained by FEM, 

analytical and EFG methods respectively. The MLPG 

results are found to be in good agreement with all the 

established and analytical methods. In all the 

circumstances MLPG method has proved its worth as a 

truly meshless method and demonstrated its potential to 
solve nonlinear heat conduction problems of semi-

infinite solids. 
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