The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


Bearing is an important component of almost every mechanical system used in industrial environment. Hence the defect in bearing must be detected in advance to avoid catastrophic failure. This paper aims to diagnose the defect in bearing automatically using machine intelligence. A condition monitoring setup is designed for analyzing the defects in outer race, inner race and rolling element of bearing. MATLAB is used for feature extraction and neural network is used for diagnosis. It is found that the amplitude at defect frequencies may not always clearly indicate the increment; hence statistical analysis of bearing signature is a better alternative. The work presents an experimental investigation carried out on an experimental set-up for the study of bearing fault at same angular speed and load. This paper proposes an approach of damage detection in which defects in bearing are accurately analysed using vibration signal and neural network.

Keywords

Vibration Analysis, Bearing Fault, Statistical Feature Extraction, Artificial Neural Network.
User
Subscription Login to verify subscription
Notifications
Font Size