Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Utilization of Aquatic FernAzollapinnata as a Green Reducing Agent for the Synthesis of Silver Nanoparticles


Affiliations
1 Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
     

   Subscribe/Renew Journal


An easy and facile method of biosynthesizing silver nanoparticles (AgNP) is presented. With an attempt to utilize aquatic fernAzollapinnata, its aquatic extract was used to reduce silver nitrate (AgNO3) to silver nanoparticles. The synthesis occurred at room temperature just after mixing the extract with the salt solution which was detected by UV-Vis spectrophotometer that gave its characteristic absorbance at 445 nm. FTIR image reveals the functional groups which are responsible for reducing and capping the silver nanoparticles. SEM and TEM images show the spherical shape and size of the formed particles. Fluorescent microscopic study also shows the spherical silver nanoparticles. These results proves Azollapinnata to be a good source of reducing agent for the environment friendly and low cost synthesis of silver nanoparticles.

Keywords

AgNP, Azollapinnata, UV-Vis, SEM, TEM.
User
Subscription Login to verify subscription
Notifications
Font Size

  • RS Yehia, H Al-Sheikh (2014) World J MicrobiolBiotechnol, DOI 10.1007/s11274-014-1703-3
  • SP Velammal, TK Devil, TP Amaladhas (2016) J NanostructChem, DOI 10.1007/s40097-016-0198-x
  • NK Mondal, A Choudhury, U Dey, P Mukhopadhyay, S Chatterjee, K Das, JK Dutta (2014) Asian Pac J Trop Dis, 4(1): 204-210
  • A Hajra, S Datta, NK Mondal (2015) J Parasitic Dis, DOI: 10.1007/s 12639-015-0719-4
  • T Shahwan, SA Sirriah, M Nairat, E Bayaci, AE Eroghi, KR Hallam (2011) ChemEng J, 172:258-266
  • VK Sharma, RA Yngard, Y Lin (2009) Advances in Colloid and InterfaceSci, 145: 83-96.
  • K Sahayaraj, S Rajesh (2011) Sci against microb pathogens: communicating curr res and technoladvnces, 228-244
  • SD Solomon, M Bahadory, AV Jeyarajasingam, SA Rutkowsky, C Boritz (2007) J ChemEduc, 84:322-325
  • N Sap-Iam, C Homklinchan, R Larpudomlert, W Warisnoicharoen, A Sereemaspun, Dubas ST (2010) J ApplSci,10(23):3132-3136
  • C Lok, C Ho, R Chen, Q He, W Yu, H Sun (2007) J BiolInorgChem, 12:527–534
  • T Klaus, R Joerger, E Olsson, CG Granqvist (1999) Proc Natl AcadSci, 96(24):13611-13614
  • B Nair, T Pradeep (2002) Crystal Growth Des,2(4):293-298
  • KS Siddiqi, A Husen (2016) Nano Res Let, 11:98 DOI 10.1186/s11671-016-1311-2
  • S Gnanasekar, G Chandrakasan, K Karuppiah, H Vedagiri, P Kumpati, S Sivaperumal (2012) Colloids Surf. B: Biointerfaces, 95:235–240
  • KL Niraimathi, V Sudha, R Lavanya, P Brindha (2013) Colloids and Surfaces B: Biointerfac, 102:288– 291
  • S Marimuthu, AA Rahuman, G Rajakumar, T Santhoshkumar, AV Kirthi (2011) Parasitol Res, 108:1541-1549
  • SS Shankar, A Rai, A Ahmad, M Sastry (2004) J Colloid Interface Sci, 275:496-502
  • A Khatun, MA Ali, JG Dingle (1999) Animal Feed Sci and Technol, 81:(1-2)
  • TA Lumpkin, DL Plucknett (1980) Economic Botany, 34(2):111–153
  • W Raja, P Rathaur, SA Jhon, PW Ramteke (2012)J Res BiolSci,2(2):68-72
  • P Mulvancy (1996) Langmuir, 12:788-800
  • X Song, S Sun, W Zhang, Z Yin (2004) J colloid Interfaces Sci, 273:463-469
  • S Shende, AP Ingle, A Gade, M Rai (2014) World J microbial Biotechnology, 31:865-873
  • J Kasthuri, S Veerapandian, N Rajendiran (2009) Colloids Surf B, 68:55–60
  • ARV Nestor, VS Mendieta, MAC Lopez, RMG Espinosa, MAC Lopez, JAA Alatorre (2008) Mater Lett, 62:3103–3105
  • J Kesharlani, KY Yoon, J Hwang, M Rai (2009) J Bionanosci, 3:39–44
  • KB Narayanan, HH Park (2014) Eur J Plant Pathol, doi:10.1007/s10658-014-0399-4
  • S Medda, A Hajra, U Dey, P Bose, NK Mondal (2014) ApplNanosci, doi:10.1007/s13204-014-0387-1
  • KB Narayanan, N Sakthivel (2008) Mater Lett, 62:4588–4590
  • N Sable, S Gaikwad, S Bonde, A Gade, M Rai (2012) Nusantara Biosci, 4(2):45-49
  • DC Nethra, P Sivakumar, S Renganathan (2012) Int J NanomaterBiostruct, 2(2):16–21
  • J Huang, Q Li, D Sun, Y Lu, Y Su, X Yang, H Wang, Y Wang, W Shao, N He, J Hong, C Chen (2007) Nanotech, 18: 105104–105115

Abstract Views: 471

PDF Views: 5




  • Utilization of Aquatic FernAzollapinnata as a Green Reducing Agent for the Synthesis of Silver Nanoparticles

Abstract Views: 471  |  PDF Views: 5

Authors

Amita Hajra
Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
Naba K. Mondal
Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India

Abstract


An easy and facile method of biosynthesizing silver nanoparticles (AgNP) is presented. With an attempt to utilize aquatic fernAzollapinnata, its aquatic extract was used to reduce silver nitrate (AgNO3) to silver nanoparticles. The synthesis occurred at room temperature just after mixing the extract with the salt solution which was detected by UV-Vis spectrophotometer that gave its characteristic absorbance at 445 nm. FTIR image reveals the functional groups which are responsible for reducing and capping the silver nanoparticles. SEM and TEM images show the spherical shape and size of the formed particles. Fluorescent microscopic study also shows the spherical silver nanoparticles. These results proves Azollapinnata to be a good source of reducing agent for the environment friendly and low cost synthesis of silver nanoparticles.

Keywords


AgNP, Azollapinnata, UV-Vis, SEM, TEM.

References





DOI: https://doi.org/10.24906/isc%2F2017%2Fv31%2Fi2%2F151967