Refine your search
Collections
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Mondal, S.
- Synthesis of rGO@ZnS Nanocomposites for Visible Light Assisted High Photocatalytic Performance
Abstract Views :448 |
PDF Views:5
Authors
Affiliations
1 Department of Physics, Presidency University, 86/1 College Street, Kolkata-700073, IN
2 Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Block - AF, Sector - 1, Bidhannagar, Kolkata, West Bengal-700064, IN
1 Department of Physics, Presidency University, 86/1 College Street, Kolkata-700073, IN
2 Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Block - AF, Sector - 1, Bidhannagar, Kolkata, West Bengal-700064, IN
Source
Invertis Journals of Renewable Energy, Vol 7, No 2 (2017), Pagination: 64-69Abstract
ZnS nanobelts and ZnS@reduced graphene oxide (rGO) nanocomposites were synthesized via simple solvothermal treatments. The chemical composition, structure and optical properties of ZnS nanobelts and ZnS@rGO nanocomposites samples were characterized by X-ray diffraction (XRD),Raman Spectroscopy and FESEM, UV-visible spectroscopy. We have used UV-Visible absorption spectra to find the optical band gap of prepared ZnS nanobelts and ZnS@rGO nanocomposites, direct bandgap of pure ZnS is 2.70 eV and that in case of ZnS@rGO is about 2.59 eV. The bandgap of pure ZnS nanostructure differ significantly from bulk ZnS due to the quantum confinement effect in nanostructure. ZnS nanostructure and ZnS@rGO nanocomposites were used as a photocatalyst for the degradation of methylene blue (MB) under visible light irradiation.Keywords
Reduced Graphene Oxides, Nanocomposites, Photo Catalyst.References
- Maity R. and Chattopadhyay K.K., Nanotechnology, 15, (2004) 812-816.
- Tittel J., Gohde W., Koberling F., Basche T., Kornowski A., Weller H. and Eychmuller A., J. Phys. Chem. B, 101, (1997) 3013-3016.
- Dinsmore A.D., Hsu D.S., Gray H.F., Qadri S.B., Tian Y. and Ratna B.R., Appl. Phys. Lett., 75, (1999) 802-804.
- Rogach A.L., Mater. Sci. Eng. B, 69-70, (2000), 435-440.
- Mahamuni S., Borgohain K., Bendre B.S., Leppert V.J. and Risbud S.H., J. Appl. Phys., 85, (1999), 2861-2865.
- Wang L., Xu X. and Yuan X., Journal of Luminescence, 130, (2010) 137-140.
- Zhang Y., Zhang N., Z.-Rong Tang and Yi-Jun Xu, ACS Nano, 1, (2012) 9777-9789.
- Yuan J.L., Kajiyoshi K., Yanagisawa K., Sasaoka H. and Nishimura K., Mater. Lett., 60, (2006), 1284-1286.
- Zhao Q., Hou L. and Huang R., Inorg. Chem. Commun., 6, (2003) 971-973.
- Maity R., Maiti U.N., Mitra M.K. and Chattopadhyay K.K., Physica E, 33, (2006) 104109.
- Liao X.H., Zhu J.J. and Chen H.Y., Mater. Sci. Eng. B, 85, (2001) 85-89.