Open Access
Subscription Access
Open Access
Subscription Access
Validation of two Parameter Function Height Diameter Models
Subscribe/Renew Journal
Eleven nonlinear height diameter models were fitted and developed for Pinus trees based on individual tree height and diameter at breast height data (n=300) collected from block Langate of Kashmir province in India. Fitting of height diameter models using non-linear least square regression showed that all the parameters across all models were significant. In order to test the predictive performance of the models 10- folded cross-validation technique was used in this study. Comparison of AIC, RMSE, ME and Ad-R2 values for the training and validation data showed that most of the non-linear HD models capture the height diameter relationships for Pinus trees. Validation results suggest that Naslund -2 HD model provide the best height predictions in case of Pinus tree.
Keywords
Height, Diameter, Cross Validation, Pinus.
Subscription
Login to verify subscription
User
Font Size
Information
- Colbert, K.C., Larsen, D.R. and Lootens, J.R. (2002). Heightdiameter equations for thirteen Midwestern bottomland hardwood species. Northern J. Appl. Forestry, 19: 171– 176.
- Curtis, R.O. (1967). Height-diameter and height-diameter age equations for second-growth Douglas fir. For. Sci., 13(4): 365–375.
- Diamantopoulou, M.J. and Ozcelik, R. (2012). Evaluation of different modelling approaches for total tree-height estimation in Mediterranean region of Turkey.Forest Systems, 21: 383–397.
- Huang, S., Titus, S.J. and Wiens, D.P. (1992). Comparison of nonlinear height– diameter functions for major Alberta tree species. Can. J. For. Res., 22 : 1297– 1304.
- Jeelani, M.I., Mir, S.A., Khan, I.,Nazir, N. and Jeelani, F. (2015). Rank set sampling in improving the estimates of simple regression model. Pakistan J. Statistics & Operation Res., 11 (1) : 39-49.
- Larson, S. (1931). The shrinkage of the co-efficient of multiple correlation. J. Educ. Psychol., 22(1) : 45–55.
- McIntyre, G.A. (1952). A method for unbiased selective sampling using ranked sets. Australian J. Agric. Res., 3 : 385-390.
- Menten, L. and Michaelis, M.I. (1913). Die kinetik der invertinwirkung. Biochem. Z., 49 : 333–369.
- Meyer, W. (1940). A mathematical expression for height curves. J. Forestry, 38 : 415 – 420.
- Mosteller, F. and Turkey, J.W. (1968).Data analysis, including statistics. In Handbook of Social Psychology. AddisonWesley, pp. 601–720.
- Naslund, M. (1937). Skogsforsoksanstaltens gallringsforsok i tallskog (Forest research institute’s thinning experiments in Scots pine forests). Meddelanden frstatens skogsforsoksanstalt Hafte 29. In Swedish.
- Olson, L.D. and Delen, D. (2008). Advanced data mining technique. Berli, Heidelberg, Springer: 180.
- Parresol, B.R. (1992). Bald cypress height-diameter equations and their prediction confidence interval. Canadian J. Forest. Res., 22: 1429–1434.
- Wani, F. J., Sharma, M.K., Rizvi, S.E.H and Jeelani, M.I. (2017). Predictive modelling and validation for estimating fodder yield ofGrewia optiva.Malaysion J.Sci., 36 (2):103-115.
- Wani, F. J., Sharma, M.K., Rizvi, S.E.H and Jeelani, M.I. (2018). A study on cross validation for model selection and Estimation. Internat. J. Agric. Sci., 14(1) : 165-172.
- Wykoff, W.R., Crookston, N.L. and Stage, A.R. (1982). User’s guide to the stand prognosis model. USDA For. Serv. Gen. Tech. Rep. 133.
- Zeide, B. (1993). Analysis of growth equations. Forest. Sci., 39 (3) : 594-616.
Abstract Views: 299
PDF Views: 0