Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

High Resolution Facies Record on Late Holocene Flood Plain Sediments from Lower Reaches of Narmada Valley, Western India


Affiliations
1 Department of Geology, The Maharaja Sayajirao University of Baroda, Vadodara - 390 002, India
2 Department of Archaeology and Ancient History, The Maharaja Sayajirao University of Baroda, Vadodara - 390 002, India
3 Department of Mathematics, Indian Institute of Science, Bangalore - 560 012, India
     

   Subscribe/Renew Journal


A high resolution quantitative granulometric record for site Uchediya [21°43'2.22" N, 73° 6'26.22" E; 10 m a. s. l.] gives understanding towards accretion history of the late Holocene flood plain in the lower reaches of Narmada River. Two sediment facies (sandy and muddy) and seven subfacies (sandy subfacies: StMS+FS+CS, SmFS+MS, SlFS+VFS, and StMS + CS; muddy subfacies: FmSILT+VFS+FS, FmSILT+VFS+FS (O) and FmSILT+VFS+FS (T)) are identified based on cluster analysis supplemented with sedimentary structures observed in field and other laboratory data. Changes in hydrodynamics are further deduced based on various sedimentological parameters and their ratios leading to arrive at a depositional model.

Keywords

Lower Reaches of Narmada Valley, Late Holocene, Sedimentology, Sediment Facies, Hydrology.
Subscription Login to verify subscription
User
Notifications
Font Size

  • ALLCHIN, B. and HEGDE, K.T.M. (1969) The background of early man in the Narmada Valley, Gujarat: a preliminary report of the 1969 season’s field work. Jour. MS Univ. Baroda, v.12, pp.141-145.
  • BARTHOLDY, J., CHRISTIANSEN, C. and PEDERSEN, J.B.T. (2007) Comparing spatial grain-size trends inferred from textural parameters using percentile statistical parameters and those based on the log-hyperbolic method. Sedimentary Geol., v.202, pp.436-452.
  • BEDI, N. and VAIDYANADHAN, R. (1982) Effect of neotectonics on the morphology of the Narmada river in Gujarat, Western India. Z. Geomorph.N.F, pp.87-102.
  • BHANDARI, S., MAURYA, D.M. and CHAMYAL, L.S. (2005) Late Pleistocene alluvial plain sedimentation in Lower Narmada Valley, Western India: Palaeoenvironmental implications. Jour. Asian Earth Sci., v.24, pp.433-444.
  • BLOTT, S.J. and PYE, K. (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments Earth Surface Processes and Landforms, v.26, pp.1237-1248.
  • BRANDONO, M., FREEZZA, V., TOMASSETTI, L., PEDLEY, M. and MATTEUCCI, R. (2009) Facies analysis and palaeoenvironmental interpretation of the Late Oligocene Attard Member (Lower Coralline Limestone Formation), Malta. Sedimentology, v.56, pp.1138-1158.
  • BUSCOMBE, D. and MASSELINK, G. (2009) Grain-size information from the statistical properties of digital images of sediment. Sedimentology, v.56, pp.421-438.
  • CHAMYAL, L.S., KHADKIKAR, A.S., MALIK, J.N. and MAURYA, D.M. (1997) Sedimentology of the Narmada alluvial fan, western India. Sedimentary Geol., v.107, pp.263-279.
  • CHAMYAL, L.S., MAURYA, D.M., BHANDARI, S. and RAJ, R. (2002) Late Quaternary geomorphic evolution of the lower Narmada valley, Western India: implications for neotectonic activity along the Narmada-Son Fault. Geomorphology, v.46, pp.177202.
  • CHAMYAL, L.S., and MERH, S.S. (1992) Sequence stratigraphy of the surface Quaternary deposits in the semi-arid basins of Gujarat. Man and Environment, v.17, pp.33-40.
  • CHAMYAL, L.S., SHARMA, B., MERH, S.S. and KARAMI, H. (1994) Significance of bank material at Tilakwada in lower Narmada Valley. Curr. Sci., v.66, pp.306-307.
  • CHEETHAM, M.D., KEENE, A.F., BUSH, R.T., SULLIVAN, L.A. and ERSKINE, W.D. (2008) A comparison of grain-size analysis methods for sand-dominated fluvial sediments. Sedimentology, v.55, pp.1905-1913.
  • CITTERIO, A. and PIEGAY, H. (2009) Overbank sedimentation rates in former channel lakes: characterization and control factors. Sedimentology, v.56, pp.461-482.
  • DOEGLAS, D.J. (1968) Grain-size indices, classification and environment. Sedimentology, v.10, pp.83-100.
  • FOLK, R.L. (1966) A review of grain-size parameters. Sedimentology, v.6, pp.73-93.
  • FOLK, R.L. (1974) Petrology of Sedimentary Rocks. Hemphil Publishing Company, Austin, TX.
  • FOLK, R.L. and WARD, W.C. (1957) Brazos River bar: a study in the significance of grain size parameters. Jour. Sediment. Petrol., v.27, pp.3-26.
  • FRIEDMAN, G.M., (1967) Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. Jour. Sediment. Petrol., v.37. pp.327-354.
  • FRIEDMAN, G.M. and SANDERS, J. (1978) Principles of Sedimentology. Wiley, New York.
  • FRIEND, P., HIRST, J. and NICHOLS, G. (1986) Sandstone-body structure and river process in the Ebro Basin of Aragon, Spain. Cuadernos de geología ibérica. Jour. Iberian Geol., pp.9-30.
  • FRIEND, P.F., SLATER, M.J. and WILLIAMS, R.C. (1979) Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Jour. Geol. Soc. London, v.136, pp.39-46.
  • GADEKAR, D., NAIK, S. and SAHAI, B. (1981) Some aspects of geomorphic evolution of the Lower Narmada and Mahi rivers, from Landsat imagery. Recent Res. Geol., pp.32-41.
  • GANAPATHI, S. and PANDEY, A.N. (1991) Evolution of Landforms on Narmada and Tapti Estuarine Deltas, Gujarat Quaternary Deltas of India, pp.103.
  • GOOSSENS, D. (2008) Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology, v.55, pp.65-96.
  • GUERZONI, S., PORTARO, R., TRINCARDI, F., MOLINAROLI, E., LANGONE L., et al. (1996) Statistical analyses of grain-size, geochemical and mineralogical data in core CM92-43, Central Adriatic basin. Mem. Ist. ital. Idrobiol, v.55, pp.231-245.
  • HAJEK, E.A., HUZURBAZAR, S. V., MOHRIG, D., LYNDS, R.M. and HELLER, P.L. (2010) Statistical Characterization of Grain-Size Distributions in Sandy Fluvial Systems. Jour. Sediment. Res., v.80, pp.184-192.
  • JACKSON, R.G. (1975) Hierarchical attributes and a unifying model of bed forms composed of cohesionless material and produced by shearing flow. Bull. Geol. Soc. Amer., v.86, pp.1523.
  • KNOX, J.C. (2000) Sensitivity of modern and Holocene floods to climate change. Quaternary Sci. Rev., v.19, pp.439-457.
  • KRUMBEIN, W.C. (1934) Size frequency distribution of sediments. Jour. Sediment. Petrol., v.4, pp.65-77.
  • MACKLIN, M.G., FULLER, I.C., LEWIN, J., MAAS, G.S., PASSMORE, D.G., et al. (2002) Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quaternary Sci. Rev., v.21, pp.1633-1641.
  • MACKLIN, M.G., and LEWIN, J. (2003) River sediments, great floods and centennial-scale Holocene climate change. Jour. Quaternary Sci., v.18, pp.101-105.
  • MARTINIUS, A.W. (2000) Labyrinthine Facies Architecture of the Tortola Fluvial System and Controls on Deposition (Late Oligocene-Early Miocene, Loranca Basin, Spain). Jour. Sedimentary Res., v.70, pp.850-867.
  • MARTINS, L.R. (1965) Significance of skewness and kurtosis in environmental interpretation. Jour. Sediment. Res., v.35, pp.768.
  • MIALL, A. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. Fluvial Sedimentology, v.5, pp.597–604.
  • MIALL, A.D. (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev., v.22, pp.261-308.
  • NANSON, G., and TOOTH, S. (1999) Arid-zone rivers as indicators of climate change. Paleoenvironmental reconstruction in arid lands. Oxford and IBH, New Delhi and Calcutta, pp.75-216.
  • OLDFIELD, F., HAO, Q., BLOEMENDAL, J.A.N., GIBBS-EGGAR, Z., PATIL S., et al. (2009) Links between bulk sediment particle size and magnetic grain-size: general observations and implications for Chinese loess studies. Sedimentology, v.56, pp.2091-2106.
  • PANDEY, S.K., SINGH, A.K. and HASNAIN, S.I. (2002) Grain-size distribution, morphoscopy and elemental chemistry of suspended sediments of Pindari Glacier, Kumaon Himalaya, India. Hydrological Sci. Jour., v.47, pp.213-226.
  • PASSEGA, R. (1964) Grain size representation by CM patterns as a geologic tool. Jour. Sediment. Res., v.34, pp.830.
  • POIZOT, E., MÉAR, Y. and BISCARA, L. (2008) Sediment Trend Analysis through the variation of granulometric parameters: A review of theories and applications. Earth Sci. Rev., v.86, pp.15-41.
  • PURKAIT, B. (2006) Grain-size distribution patterns of a point bar system in the Usri River, India. Earth Surface Processes and Landforms, v.31, pp.682-702.
  • RAJ, R. (2007) Late Pleistocene fluvial sedimentary facies, the Dhadhar River basin, Western India. Quaternary Internat., v.159, pp.93-101.
  • RAJ, R. (2008) Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India. Jour. Earth System Sci., v.117, pp.41-48.
  • RAJ, R., BHANDARI, S., MAURYA, D.M. and CHAMYAL, L. S. (2003) Geomorphic Indicators of Active Tectonics in the Karjan River Basin, Lower Narmada Valley, Western India. Jour. Geol. Soc. India, v.62, pp.739-752.
  • RAJ, R. and YADAVA, M.G. (2009) Late Holocene uplift in the lower Narmada basin, western India. Curr. Sci., v.96, pp.985-988.
  • REID, I. and FROSTICK, L. (1997) Channel form, flows and sediments in deserts. Arid zone geomorphology: Process, form and change in drylands, pp.205-229.
  • REN, J. and PACKMAN, A.I. (2007) Changes in fine sediment size distributions due to interactions with streambed sediments. Sedimentary Geol., v.202, pp.529-537.
  • RICHARD, G.A., JULIEN, P.Y. and BAIRD, D.C. (2005) Statistical analysis of lateral migration of the Rio Grande, New Mexico. Geomorphology, v.71, pp.139-155.
  • SAHU, B.K. (1964) Depositional mechanisms from the size analysis of clastic sediments. Jour. Sediment. Petrol., v.34, pp.73-83.
  • SANT, D.A. (1991) Structure and Geomorphic evolution of the Lower Narmada Valley in Western India. Unpubl, Ph. D. Thesis, the Maharaja Sayajrao University, Vadodara, 228p.
  • SANT, D.A. (1999) Landscape, Structure and Morphological Development of Saurashtra Peninsula and Lower Narmada Valley, Western India. Mem. Geol. Soc. of India, no.43, pp.335-352.
  • SANT, D.A. and KARANTH, R.V. (1988) Morphological Parameters and their Correlation with Litology and Structure of the Area betwen Uchh Nadi and Narmada River in Central Gujarat. Navnirman, v.19, pp.17-28.
  • SANT, D.A. and KARANTH, R.V. (1993) Drainage evolution of the lower Narmada valley, western India Geomorphology, v.8, pp.221-244.
  • SUKUMARAN, P., PARVEZ, I.A., SANT, D.A., RANGARAJAN, G. and KRISHNAN, K. (2011) Profiling of Late Tertiary - Early Quaternary surface in the lower reaches of Narmada valley using Microtremors. Jour. Asian Earth Sci., v.41(3), pp.325334.
  • SUKUMARAN, P., RAJSHEKHAR, C., SANT, D.A. and KRISHNAN, K. (Accepted) Late Holocene Storm Records from Lower Reaches of Narmada Valley, western India. Jour. Geol. Soc. India, v.79,
  • SYVITSKI, J.P. (Ed.) (2007) Principles, methods, and application of particle size analysis. Cambridge University Press.
  • TENNER, W. F. (2007a) Application of suite statistics to stratigraphy and sea-level. In: J.P. Syvitski (Ed.), Principle, mehods, and application of particle Size Analysis. Cambridge University Press, Cambridge, New York, pp.283-292.
  • TENNER, W.F. (2007b). Suite statistics: The hudrodynamic evolution of the sediment pool. In: J.P. Syvitski (Ed.), Principle, mehods, and application of particle Size Analysis. Cambridge University Press, Cambridge, New York, pp.225-236.
  • VISHER, G.S. (1969) Grain size distributions and depositional processes. Jour. Sediment. Petrol., v.39, pp.1074-1106.
  • WAINWRIGHT, G. (1964) The Pleistocene Deposits of the Lower Narmada River and an Early Stone Age Industry from the River Chambal. The Maharaja Sayajirao University of Baroda, Dept. Archaeology and Ancient History, Series 7, Baroda, India.

Abstract Views: 237

PDF Views: 0




  • High Resolution Facies Record on Late Holocene Flood Plain Sediments from Lower Reaches of Narmada Valley, Western India

Abstract Views: 237  |  PDF Views: 0

Authors

Prabhin Sukumaran
Department of Geology, The Maharaja Sayajirao University of Baroda, Vadodara - 390 002, India
Dhananjay A. Sant
Department of Geology, The Maharaja Sayajirao University of Baroda, Vadodara - 390 002, India
K. Krishnan
Department of Archaeology and Ancient History, The Maharaja Sayajirao University of Baroda, Vadodara - 390 002, India
Govindan Rangarajan
Department of Mathematics, Indian Institute of Science, Bangalore - 560 012, India

Abstract


A high resolution quantitative granulometric record for site Uchediya [21°43'2.22" N, 73° 6'26.22" E; 10 m a. s. l.] gives understanding towards accretion history of the late Holocene flood plain in the lower reaches of Narmada River. Two sediment facies (sandy and muddy) and seven subfacies (sandy subfacies: StMS+FS+CS, SmFS+MS, SlFS+VFS, and StMS + CS; muddy subfacies: FmSILT+VFS+FS, FmSILT+VFS+FS (O) and FmSILT+VFS+FS (T)) are identified based on cluster analysis supplemented with sedimentary structures observed in field and other laboratory data. Changes in hydrodynamics are further deduced based on various sedimentological parameters and their ratios leading to arrive at a depositional model.

Keywords


Lower Reaches of Narmada Valley, Late Holocene, Sedimentology, Sediment Facies, Hydrology.

References