Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Ediacaran Fossils in Meso- and Paleoproterozoic Rocks in Peninsular India Extend Darwin


Affiliations
1 Department of Geological Sciences, Indiana University, 1001 East 10th Street, Bloomington, IN 47405, United States
     

   Subscribe/Renew Journal


Typically or arguably Ediacaran fossils (635 Ma to 543 Ma) are reported by several research groups from one unit of the Chhattisgarh and two units of the Vindhyan Supergroups in peninsular India. Depositional ages of the host sediments, however, are inferred to be ∼1000 Ma and ∼1630 Ma as determined by U-Pb dating of magmatic and detrital zircons in rhyolitic tuff (∼ porcellanite) and sandstones, provenance considerations and paleopole positions. The contradiction of absolute ages results from inferring the Ediacaran age strictly on the basis of fossils. I argue that the fossils reported from the Chhattisgarh and Vindhyan Supergroups should be considered mostly Mesoproterozoic and late Proterozoic in age. I also argue that although the Ediacaran Period records explosive diversity of preserved fossils, many forms very likely appeared much earlier with variable degrees of preservation or none at all at times, and, that their age-ranges extend to the Paleoproterozoic. I hypothesize that the rate of increase of biological diversity was lower than the rate of preservation in certain geological intervals, especially immediately after extinction events.

Keywords

Ediacaran Fossils, Paleoproterozoic, Darwin.
Subscription Login to verify subscription
User
Notifications
Font Size

  • ALENE, M., JENKIN, G.R.T., LENG, M.J. and DARBYSHIRE, D.P.F. (2006) The Tambien Group, Ethiopia: An early Cryogenian (ca. 800-735 Ma) Neoproterozoic sequence in the Arabian- Nubian Shield. Precambrian Res., v.147, pp. 79-99
  • ANTCLIFFE, J.B. and BRASIER, M.D. (2007) Charnia and sea pens are poles apart. Jour. Geol. Soc. London, v.164, pp.49-51.
  • AZMI, R. J., JOSHI, D., TIWARI, B.N., JOSHI, M.N., MOHAN, K. and SRIVASTAVA, S.S. (2006) Age of the Vindhyan Supergroup of Central India: An exposition of biochronology vs. radiochronology. In: D. Sinha (Ed.), Micropaleontology: Application in Stratigraphy and Paleoceanography. Narosa, New Delhi, pp.29-62.
  • BAGLA, P. (2000) Team rejects claim of early Indian fossils. Science, v.289, p.1273.
  • BANERJEE, S., BHATTACHARYA, S.K. and SARKAR, S. (2006) Carbon and oxygen compositions of the carbonate facies in the Vindhyan Supergroup, central India. Jour. Earth System Sci., v.115, pp.113-134.
  • BASU, A. (2008) Antiquity of Ediacaran fossils, early shelled organisms, recent radiometric age-dates from India and ancestral biota (abstract; CD-ROM)). LPSC Abstracts, v.39, #1740.
  • BENGTSON, S., BELIVANOVA, V., RASMUSSEN, B. and WHITEHOUSE, M.J. (2007a) The Vindhyan enigma revisited. Geol. Soc. America Annual Meeting Abstracts, v.39, Paper 120-1.
  • BENGTSON, S., RASMUSSEN, B. and KRAPEZ, B. (2007b) The Paleoproterozoic megascopic Stirling biota. Paleobiology, v.33, pp.351-381.
  • BHARGAVA, O.N., SRIKANTIA, S.V., AZMI, R.J., BHATIA, S.B., AHLUWALIA, A.D., BHATT, D.K. and RAI, V. (2000) Vindhyan fossil controversy. Jour. Geol. Soc. India, v.55, pp.675-680.
  • BHATT, D.K., PRASAD, S., JAIN, R.L., and MATHUR, A.K. (2005) Some critical field observations on the genesis and stratigraphical status of Pokaran boulder bed, western Rajasthan. Jour. Geol. Soc. India, v.65, pp.301-308.
  • BHATT, D.K., SINGH, G., GUPTA, S., SONI, M.K., MOITRA, A.K., DAS, D.P. and DE, C. (1999) Fossil report from Semri Group, lower Vindhyan. Jour. Geol. Soc. India, v.53, pp.717-723.
  • BLAIR, J.E. and HEDGES, S.B. (2005) Molecular clocks do not support the Cambrian Explosion. Molecular Biology and Evolution, v.22, pp.387-390.
  • BLEEKER, W. (2004) Toward a "natural" Precambrian time scale. In: M. Gradstein, Felix, G. Ogg, James, and G. Smith, Alan (Eds.), A Geologic Time Scale 2004. Cambridge University Press, pp.141-146.
  • BOWRING, S.A. and ERWIN, D.H. (1998) A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today, v.8, pp.1-8.
  • BRASIER, M., GREEN, O. and SHIELDS, G. (1997) Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, v.25, pp.303-306.
  • BRASIER, M., MCCARRON, G., TUCKER, R., LEATHER, J., ALLEN, P. and SHIELDS, G. (2000) New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, v.28, pp.175-178.
  • BREYER, J.A., BUSBEY, A.B., HANSON, R.E. and ROY, E. C. (1995) Possible new evidence for the origin of metazoans prior to 1 Ga: Sediment-filled tubes from the Mesoproterozoic Allamoore Formation, Trans-Pecos Texas. Geology, v.23, pp.269-272.
  • BUDD, G. E. (2008) The earliest fossil record of the animals and its significance. Phil. Trans. Royal Soc. London. Biological Sciences, v.363, pp.1425-1434.
  • BURTIS, E.W., SEARS, J.W. and CHAMBERLAIN, K.R. (2007) Age and petrology of Neoproterozoic intrusions in the Northern Rocky Mountains, U. S. A.: correlation with the Gunbarrel magmatic event. In: K. Link, Paul and S. Lewis, Reed (Eds.), Proterozoic Geology of Western North America and Siberia. SEPM Spec. Publ., v.86, pp.175-191.
  • CAMPANHA, G.A.C., BASEI, M.S., TASSINARI, C. C.G., NUTMAN, A.P. and FALEIROS, F. M. (2008) Constraining the age of the Iporanga Formation with SHRIMP U-Pb zircon: Implications for possible Ediacaran glaciation in the Ribeira Belt, SE Brazil. Gondwana Res., v.13, pp.117-125.
  • CHAKRABARTI, A. (1990) Traces and dubio traces: examples from the so-called Late Proterozoic siliciclastic rocks of the Vindhyan Supergroup around Maihar, India. Precambrian Res., v.47, pp.141-153.
  • CHAKRABARTI, R., BASU, A.R. and CHAKRABARTI, A. (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Res., v.159, pp.260-274.
  • CHAKRABORTY, C. (2006) Proterozoic intracontinental basin: the Vindhyan example. Jour. Earth System Science, v.115, pp.3-22.
  • CHAUDHURI, A.K., MUKHOPADHYAY, J., PATRANABIS-DEB, S. and CHANDA, S.K. (1999) The Neoproterozoic cratonic successions of Peninsular India. Gondwana Res., v.2, pp.213-225.
  • CONDON, D., ZHU, M., BOWRING, S., WANG, W., YANG, A. and JIN, Y. (2005) U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, v.308, pp.95-98.
  • DAS, N., DUTTA, D.R. and DAS, D.P. (2001) Proterozoic cover sediments of southeastern Chhattisgarh State and adjoining parts of Orissa. Geol. Surv. India Spec. Publ., v.55, pp.237-262.
  • DE, C. (2006a) Ediacara fossil assemblage in the Upper Vindhyans of central India and its significance. Jour. Asian Earth Sci., v. 27, pp. 660-683.
  • DE, C. (2006b) Vindhyan trace fossils, dubio fossils and pseudofossils in the light of advent and early evolution of metazoans. Indian Minerals, v.60, pp.1-38.
  • DE, C. (2003) Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, late Neoproterozoic of India. Jour. Asian Earth Sci., v.21, pp.387-395.
  • DE, C. (2007) Study of the Proterozoic life of the Chhattisgarh basin, Chhattisgarh in the light of early organic evolution, biostratigraphy and paleoenvironments. Rec. Geol. Surv. India, v.139, pp.23-24.
  • DONG, L., XIAO, S., SHEN, B. and ZHOU, C. (2008) Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Jour. Geol. Soc., v.165, pp.367-378.
  • DONGRE, A., CHALAPATHI RAO, N.V. and KAMDE, G. (2008) Limestone xenolith in Siddanpalli Kimberlite, Gadwal Granite- Greenstone Terrain, Eastern Dharwar Craton, Southern India: Remnant of Proterozoic platformal cover sequence of Bhima/ Kurnool age? Jour. Geol., v.116, pp.184-191.
  • DONOGHUE, P.C.J. and BENTON, M.J. (2007) Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends in Ecology & Evolution, v.22, pp.424-431.
  • DUTTA, S., STEINER, M., BANERJEE, S., ERDTMANN, B.-D., JEEVAN KUMAR, S. and MANN, U. (2006) Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: insights from light and electron microscopy and pyrolysis-gas chromatography. Jour. Earth System Science, v.115, pp.99-112.
  • FEDONKIN, M.A., GEHLING, J.G., GREY, K., NARBONNE, G.M. and VICKERS-RICH, P. (2007) The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. The Johns Hopkins University Press, Baltimore, 326 p.
  • GRAZHDANKIN, D. and GERDES, G. (2007) Ediacaran microbial colonies. Lethaia, v.40, pp.201-210.
  • GREGORY, L.C., MEERT, J.G., PRADHAN, V., PANDIT, M.K., TAMRAT, E. and MALONE, S.J. (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup. Precambrian Res., v.149, pp.65-75.
  • GROTZINGER, J.P., BOWRING, S.A., SAYLOR, B. Z. and KAUFMAN, A.J. (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science, v.270, pp.598-604.
  • HAGADORN, J.W., XIAO, S., DONOGHUE, PP. C. J., BENGTSON, S., GOSTLING, N.J., PAWLOWSKA, M., RAFF, E.C., RAFF, R.A., TURNER, F.R., CHONGYU, Y., ZHOU, C., YUAN, X., MCFEELY, M.B., STAMPANONI, M., and NEALSON, K.H. (2006) Cellular and subcellular structure of Neoproterozoic animal embryos. Science, v.314, pp.291-294.
  • HALVERSON, G.P., DUDAS, F.O., MALOOF, A.C. and BOWRING, S.A. (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeo. Palaeoclimat. Palaeoecol., v.256, pp.103-129.
  • HALVERSON, G.P., HOFFMAN, P.F., SCHRAG, D.P., MALOOF, A.C. and RICE, A.H.N. (2005) Toward a Neoproterozoic composite carbon-isotope record. Bull. Geol. Soc. Amer., v.117, pp.1181-1207.
  • HILL, A.C., HAINES, P.W., GREY, K. and WILLMAN, S. (2007) New records of Ediacaran Acraman ejecta in drillholes from the Stuart Shelf and Officer Basin, South Australia. Meteoritics and Planetary Science, v.42, pp.1859-2031.
  • HOFFMAN, P.F. and SCHRAG, D.P. (2000) Snowball Earth: Scientific American, v.282, pp.62-75.
  • HOFFMAN, P.F. and SCHRAG, D.P. (2002) The snowball Earth hypothesis: testing the limits of global change: Terra Nova, v.14, pp.129-155.
  • HOFMANN, H.J. (2005) Palaeoproterozoic dubio fossils from India revisited - Vindhyan triploblastic animal burrows or pseudofossils? Jour. Palaeont. Soc. India, v.50, pp.113-120.
  • HUGHES, N.C., PENG SHANCHI, BHARGAVA, O. N., AHLUWALIA, A.D., WALIA, S., MYROW, P. M. and PARCHA, S.K. (2005) Cambrian biostratigraphy of the Tal Group, Lesser Himalaya, India, and early Tsanglangpuan (late Early Cambrian) trilobites from the Nigali Dhar Syncline. Geological Mag., v.142, pp.57-80.
  • JAVAUX, E.J. and MARSHAL, C.P. (2006) A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs. Rev. Palaeobotany and Palynology, v.139, pp.1-15.
  • KATHAL, P.K., PATEL, D.R. and ALEXANDER, P.O. (2000) An Ediacaran fossil Spriggina (?) from the Semri Group and its implication on the age of the Proterozoic Vindhyan Basin, central India: Neues Jahrbuch fuer Geologie und Palaeontologie. Monatshefte, v.2000, pp.321-332.
  • KAUFFMAN, E.G. and STEIDTMANN, J.R. (1981) Are these the oldest metazoan trace fossils? Jour. Paleont., v.55, pp.923-947.
  • KAUFMAN, A.J., JIANG, G., CHRISTIE-BLICK, N., BANERJEE, D.M. and RAI, V. (2006) Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India: Precambrian Res., v.147, pp.156-185.
  • KIRSCHVINK, J.L. (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: J.W. Schopf and C. Klein (Eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, pp.51-52.
  • KIRSCHVINK, J.L., GAIDOS, E.J., BERTANI, L.E., BEUKES, N.J., GUTZMER, J., MAEPA, L.N. and STEINBERGER, R. E. (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc.Natl. Acad. Sci., United States of America (PNAS), v.97, pp.1400-1405.
  • KNOLL, A. H. (2000) Learning to tell Neoproterozoic time. Precambrian Res., v.100, pp.3-20.
  • KNOLL, A.H., WALTER, M.R., NARBONNE, G.M. and CHRISTIE-BLICK, N. (2006a) The Ediacaran Period: a new addition to the geologic time scale. Lethaia, v.39, pp.13-30.
  • KNOLL, A.H., JAVAUX, E.J., HEWITT, D. and COHEN, P. (2006b) Eukaryotic organisms in Proterozoic oceans. Phil. Trans. Royal Soc. London, Biological Sciences, v.361, pp.1023-1038.
  • KNOLL, A.H. and CARROLL, S.B. (1999) Early animal evolution: emerging views from comparative biology and geology. Science, v.284, pp.2129-2137.
  • KNOLL, A.H., WALTER, M.R., NARBONNE, G. M. and CHRISTIE-BLICK, N. (2004) A New Period for the Geologic Time Scale. Science, v. 305, pp. 621-622.
  • KULKARNI, K.G., BORKAR, V.D. and BHATTACHARJEE, S. (2004) Restudy of type specimens of trace fossils from Vindhyan Supergroup of Chambal Valley. Gondwana Geol. Mag., v.19, pp.71-75.
  • KUMAR, G., SHANKER, R., MAITHY, P.K., MATHUR, V.K., BHATTACHARYA, S.K. and JANI, R. A. (1997) Terminal Proterozoic-Cambrian sequences in India: A review with special reference to Precambrian-Cambrian boundary. The Palaeobotanist, v.46, pp.19-31.
  • LAMB, D.M., AWRAMIK, S.M. and ZHU, S. (2007) Paleoproterozoic compression-like structures from the Changzhougou Formation, China: Eukaryotes or clasts? Precambrian Res., v.154, pp.236-247.
  • LEPLAND, A., VAN ZUILEN, M. A., ARRHENIUS, G., WHITEHOUSE, M.J. and FEDO, C.M. (2005) Questioning the evidence for Earth's earliest life - Akilia revisited. Geology, v.33, pp.77-79.
  • LEVINTON, J., DUBB, L. and WRAY, G.A. (2004) Simulations of evolutionary radiations and their application to understanding the probability of a Cambrian explosion. Jour. Paleont., v.78, pp.31-38.
  • MAITHY, P.K. and BABU, R. (1997) Upper Vindhyan biota and Precambrian/Cambrian boundary. The Palaeobotanist, v.46, pp.1-6.
  • MALONE, S., MEERT, J., BANERJEE, D.M., PANDIT, M., TAMRAT, E., KAMENOV, G.D., PRADHAN, V. and SOHL, L.E. (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India. A ca. 1000 Ma Closure Age for the Purana Basins?: Precambrian Res., v.164, pp.137-159.
  • MAPSTONE, N.B. and MCILROY, D. (2006) Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Res., v.149, pp.126-148.
  • MATHUR, V.K. and SRIVASTAVA, D.K. (2004) Record of terminal Neoproterozoic Ediacaran fossils from Krol Group, Nigalidhar Syncline, Sirmaur District, Himachal Pradesh, India. Jour. Geol. Soc. India, v.64, pp.231-232.
  • MCCALL, G.J.H. (2006) The Vendian (Ediacaran) in the geological record: Enigmas in geology's prelude to the Cambrian explosion: Earth Sci. Rev., v.77, pp.1-229.
  • MCELHINNY, M.W., TAYLOR, S.R. and STEVENSON, D.J. (1978) Limits to the expansion of Earth, Moon, Mars, and Mercury and to changes in the gravitational constant: Nature, v.271, pp.316-321.
  • MCKAY, D.S., GIBSON, E.K., THOMAS-KEPRTA, K.L., VALI,H., ROMANEK, C.S., CLEMETT, S.J., CHILLIER, X.D.F., MEACHLING, C.R. and ZARE, R. N. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, v.273, pp.924-930.
  • MCMENAMIN, D. S., KUMAR, S. and AWRAMIK, S.M. (1983) Microbial fossils from the Kheinjua Formation, Middle Proterozoic Semri Group (Lower Vindhyan) Son Valley area, central India: Precambrian Res., v.21, pp.247-271.
  • MEDLICOTT, H.B. and BLANFORD, W.T. (1879) A Manual of the Geology of India. Part I; Part II, Government of India. 817p. MOITRA, A.K. (2003a) Possibility of finding metazoans in Chhattisgarh Basin. Gondwana Geol. Mag., v.7, pp.395-400.
  • MOITRA, A.K. (2003b) Stromatolite biostratigraphy in the Chhattisgarh Basin and possible correlation with the Vindhyan Basin. Jour. Palaeont. Soc. India, v.48, pp.215-223.
  • MOITRA, A.K. and DE, C. (1999) Study and evaluation of metazoans and microfossils in parts of Vindhyan Supergroup at Satna and Sidhi districts, M.P. Rec. Geol. Surv. India, v.131, pp.12-13.
  • MOJZSIS, S.J. and HARRISON, T.M. (2000) Vestiges of a beginning: Clues to the emergent biosphere recorded in the oldest known sedimentary rocks: GSA Today, v. 10, pp. 2-7.
  • NARBONNE, G.M., KAUFMAN, A.J. and KNOLL, A.H. (1994) Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Bull. Geol. Soc. Amer., v.106, pp.1281-1292.
  • PANDIT, M.K., SIAL, A.N., JAMRANI, S.S. and FERREIRA, V.P. (2001) Carbon isotopic profile across the Bilara Group rocks of Trans-Aravalli Marwar Supergroup in western India: Implications for Neoproterozoic-Cambrian transition. Gondwana Res., v.4, pp.387-394.
  • PATRANABIS-DEB, S., BICKFORD, M.E., HILL, B., CHAUDHURI, A.K. and BASU, A. (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ∼500Ma adjustment in Indian Proterozoic stratigraphy: Journal of Geology, v. 115, pp. 407-415.
  • PATRANABIS-DEB, S. and CHAUDHURI, A.K. (2002) Stratigraphic architecture of the Proterozoic succession in the eastern Chattisgarth Basin, India: tectonic implications. Sedimentary Geol., v.147, pp.105-125.
  • PATRANABIS-DEB, S., SCHIEBER, J. and BASU, A. (2009) Almandine garnet phenocrysts in a ∼1 Ga rhyolitic tuff from central India. Geological Mag., v.146, pp. (in press).
  • PELECHATY, S.M., KAUFMAN, A.J. and GROTZINGER, J.P. (1996) Evaluation of d13C chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia. Bull. Geol. Soc. Amer., v.108, pp.992-1003.
  • POORNACHANDRA RAO, G.V.S., SINGH, S.B., and LAKSHMI, K.J.P. (2007) Neoproterozoic palaeomagnetic results of Jodhpur Sandstone, Marwar Supergroup, western Rajasthan. Jour. Geol. Soc. India, v.69, pp.901-908.
  • PRASAD, B. (2007) Obruchevella and other terminal Proterozoic (Vindhyan) organic-walled microfossils from the Bhander Group (Vindhyan Supergroup), Madhya Pradesh. Jour. Geol. Soc. India, v.69, pp.295-310.
  • PRAVE, A.R. (2002) Life on land in the Proterozoic: Evidence from the Torridonian rocks of northwest Scotland. Geology, v.30, pp.811-814.
  • RAGHAV, K.S., DE, C. and JAIN, R.L. (2005) The first record of Vendian medusoids and trace fossil-bearing algal matgrounds from the basal part of the Marwar Supergroup of Rajasthan, India. Indian Minerals, v.59, pp.23-30.
  • RAI, V. and SINGH, V.K. (2004) Discovery of Obruchevella Reitlinger, 1948 from the late Palaeoproterozoic lower Vindhyan succession and its significance: Jour. Palaeont. Soc. India, v.49, pp.189-196.
  • RASMUSSEN, B., BOSE, P.K., SARKAR, S., BANERJEE, S., FLETCHER, I.R. and MCNAUGHTON, N. J. (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals. Geology, v.30, pp.103-106.
  • RASMUSSEN, B., FLETCHER, I.R., BENGTSON, S. and MCNAUGHTON, N.J. (2004) SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precambrian Res., v.133, pp.329-337.
  • RATHORE, S.S., VENKATESAN, T.R. and SRIVASTAVA, R.K. (1999) Rb-Sr isotope dating of Neoproterozoic (Malani Group) magmatism from southwest Rajasthan, India: evidence of younger Pan-African thermal event by 40Ar-39Ar studies. Gondwana Res., v.2, pp.271-281.
  • RAY, J. S. (2006) Age of the Vindhyan Supergroup: a review of recent findings. Jour. Earth System Science, v.115, pp.149-160.
  • RAY, J.S., MARTIN, M.W., VEIZER, J. and BOWRING, S.A. (2002) UPb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India: Geology, v. 30, pp. 131-134.
  • RAY, J.S., VEIZER, J. and DAVIS, W.J. (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Res., v.121, pp.103-140.
  • SARANGI, S., GOPALAN, K. and KUMAR, S. (2004) Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res., v.132, pp.107-121.
  • SAYLOR, B.Z., KAUFMAN, A.J., GROTZINGER, J.P. and URBAN, F. (1998) A composite reference section for terminal Proterozoic strata of southern Namibia. Jour. Sedimentary Res., v.68, pp.1223-1235.
  • SERGEEV, V.N. (2006) The importance of Precambrian microfossils for modern biostratigraphy. Paleont. Jour., v.40, pp.S664-S673.
  • SHANKER, R., BHATTACHARYA, D.D., PANDE, A.C. and MATHUR, V.K. (2004) Ediacaran biota from the Jarashi (middle Krol) and Mahi (lower Krol) Formations, Krol Group, Lesser Himalaya, India. Jour. Geol. Soc. India, v.63, pp.649-654.
  • SHARMA, M. (2006) Palaeobiology of Mesoproterozoic Salkhan Limestone, Semri Group, Rohtas, Bihar, India: systematics and significance. Jour. Earth System Sci., v.115, pp.67-98.
  • SHIXING, Z. AND HUINENG, C. (1995) Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian Area, North China. Science, v.270, pp.620-622.
  • SOKOLOV, B.S. and IWANOWSKI, A.B. (1990) The Vendian System. Vol 1: Paleontology. Springer-Verlag. 383p.
  • SPRIGG, R.C. (1947) Early Cambrian (?) jellyfishes from the Flinders ranges, South Australia. Trans. Royal Soc. South Australia, v.71, pp.212-224.
  • SUGITANI, K., GREY, K., ALLWOOD, A., NAGAOKA, T., MIMURA, K., MINAMI, M., MARSHALL, C.P., VAN KRANENDONK, M.J. and WALTER, M.R. (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubio fossils, or pseudofossils? Precambrian Res., v.158, pp.228-262.
  • TEWARI, V.C. (2001) Neoproterozoic glaciation in the Uttaranchal Lesser Himalaya and the global palaeoclimatic change. Geol. Surv. India Spec. Publ., v.65, pp.49-55.
  • TEWARI, V.C. and SIAL, A.N. (2007) Neoproterozoic-Early Cambrian isotopic variation and chemostratigraphy of the Lesser Himalaya, India, eastern Gondwana: Chemical Geol., v.237, pp.64-88.
  • TORSVIK, T.H., ASHWAL, L.D., TUCKER, R.D., and EIDE, E.A. (2001) Neoproterozoic geochronology and palaeogeography of the Seychelles microcontinent; the India link. Precambrian Res., v.110, pp.47-59.
  • WAGGONER, B. (1998) Interpreting the earliest metazoan fossils: What can we learn? American Zoologist, v.38, pp.975-982.
  • WRAY, G.A., LEVINTON, J.S. and SHAPIRO, L. H. (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, v.274, pp.568-573.
  • XIAO, S., KNOLL, A. H., KAUFMAN, A. J., YIN, L., and ZHANG, Y. (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res., v.84, pp.197-220.
  • XUE, Y., ZHOU, C. and TANG, T. (1999) "Animal embryos", a misinterpretation of Neoproterozoic microfossils. Acta Micropalaeontologica Sinica = Weiti Gushengwu Xuebao, v.16, pp.1-4.

Abstract Views: 201

PDF Views: 0




  • Ediacaran Fossils in Meso- and Paleoproterozoic Rocks in Peninsular India Extend Darwin

Abstract Views: 201  |  PDF Views: 0

Authors

Abhijit Basu
Department of Geological Sciences, Indiana University, 1001 East 10<SUP>th</SUP> Street, Bloomington, IN 47405, United States

Abstract


Typically or arguably Ediacaran fossils (635 Ma to 543 Ma) are reported by several research groups from one unit of the Chhattisgarh and two units of the Vindhyan Supergroups in peninsular India. Depositional ages of the host sediments, however, are inferred to be ∼1000 Ma and ∼1630 Ma as determined by U-Pb dating of magmatic and detrital zircons in rhyolitic tuff (∼ porcellanite) and sandstones, provenance considerations and paleopole positions. The contradiction of absolute ages results from inferring the Ediacaran age strictly on the basis of fossils. I argue that the fossils reported from the Chhattisgarh and Vindhyan Supergroups should be considered mostly Mesoproterozoic and late Proterozoic in age. I also argue that although the Ediacaran Period records explosive diversity of preserved fossils, many forms very likely appeared much earlier with variable degrees of preservation or none at all at times, and, that their age-ranges extend to the Paleoproterozoic. I hypothesize that the rate of increase of biological diversity was lower than the rate of preservation in certain geological intervals, especially immediately after extinction events.

Keywords


Ediacaran Fossils, Paleoproterozoic, Darwin.

References