Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Environmental Implication on Chamber Accretion of Neogloboquadrina pachyderma (Ehrenberg) in Southern Indian Ocean


Affiliations
1 National Centre for Antarctic and Ocean Research (Ministry of Earth Sciences), Headland Sada, Goa - 403 804, India
2 Department of Geology, Banaras Hindu University, Varanasi - 221 005, India
     

   Subscribe/Renew Journal


Morphological variations with respect to the number of chambers in Neogloboquadrina pachyderma (Ehrenberg) were investigated in 25 surficial sediments of Indian Ocean taken along the N-S transect between 9.69° N and 55.01° S latitude and 80° E and 40° E longitude. The number of chamber was counted for at least 40 specimens picked for each sample. The average number of chamber was correlated with the average temperature and salinity along the changing latitude. The results showed a high correlation between the number of chambers and temperature and salinity. It was noted that number of chambers decreases from equatorial to polar region. The carbonate saturation and nutrient availability could possibly be other causes for the change in number of chambers. The results of this study, if applied on the subsurface marine sediments, will bear implications on paleoclimatic condition in the Indian Ocean region.

Keywords

Neogloboquadrina pachyderma, Number of Chambers, Temperature and Salinity, Equatorial to Polar Region, Indian Ocean.
Subscription Login to verify subscription
User
Notifications
Font Size

  • BANDY, O.L. (1967) Problems of Tertiary foraminiferal and radiolarian zonation, circum-Pacific area. In: K. Hatai (Ed.), Tertiary correlations and climatic changes in the Pacific. Pacific Sci. Cong., 11th, Tokyo, 1966, pp.95-102.
  • BE, A.W.H. and HUTSON, W.H. (1977) Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean. Micropaleontiology, v.23, no.4, pp.369-414.
  • BE, A.W.H. and TOLDERLUND, D.S. (1971) Distribution and ecology of living planktic foraminifera in surface waters of the Atlantic and Indian Oceans. In: B.M. Funnel and W.R. Riedel (Eds.), The Micropaleontology of the Oceans, Cambridge Univ. Press, London, pp.105-149.
  • BEAUCHAMP, B. and BAUD, A. (2002) Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr. Palaeoclimat. Palaeoecol., v.184, pp.37-63.
  • BIJMA, J, SPERO, H.J. and LEA, D.W. (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: G. Fischer and G. Wefer (Eds.), Use of Proxies in Paleoceanography; Examples from the South Atlantic, Springer, Berlin, pp.489-512.
  • BIJMA, J., FABER, W.W.J. and HEMLEBEN, C. (1990) Temperature and salinity limits for growth and survival of some planktic foraminifers in laboratory cultures. Jour. Foram. Res., v.20, pp.95-116.
  • BOLTOVSKOY, E. and WRIGHT, R. (1976) Recent Foraminifera. Dr. W. Junk b.v. Publishers, The Hague, 515p.
  • BRADSHAW, J.S. (1959) Ecology of living planktic foraminifera in the North and Equatorial Pacific Ocean, Contrib. Cush. Found. Foram. Res., v.10, No.2, pp.25-64.
  • BUDDEMEIER, R.W. and FAUTIN, D.G. (1996) Saturation state and the evolution and biogeography of symbiotic calcification. In: D. Allemand and J.-P. Cuif (Eds.), 7th International Symposium on Biomineralization, MusEe OcEanographique, Monaco, pp.23-32.
  • CARON, D.A., FABER, W.W.J. and BE, A.W.H. (1987a) Effects of temperature and salinity on the growth and survival of the planktic foraminifer Globigerinoides sacculifer. Jour. Mar. Biol. Assoc. UK, v.67, pp.323-342.
  • CARON, D.A., FABER, W.W.J. and BE, A.W.H. (1987b) Growth of the spinose planktic foraminifer Orbulina universa in laboratory culture and the effect of temperature on life processes. Jour. Mar. Biol. Assoc., UK, v.67, pp.343-358.
  • CLIMAP PROJECT MEMBER (1981) Seasonal reconstruction of the earth's surface at the last glacial maximum. Geol. Soc. America Map and Chart Ser., p.36.
  • EGUCHI, N.O., KAWAHATA, H. and TAIRA, A. (1999) Seasonal response of planktonic foraminifera to surface ocean condition: sediment trap results from the Central North Pacific Ocean. Jour. Oceanogr., v.55, pp.681-691.
  • FAIRBRIDGE, R.W. (1966) Encyclopedia of Oceanography. Reinhold Press, New York, 1021p.
  • GATTUSO, J.-P., FRANKIGNOULLE, M., BOURGE, I., ROMAINE, S. and BUDDEMEIER, R.W. (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planet. Change, v.18, pp.37-46.
  • HECHT, A.D. (1976) An ecologic model for test size variation recent planktonic foraminifera: application to the fossil record. Jour. Foraminifer. Res., v.6, pp.295-311.
  • HUTSON, W. (1980) The Agulhas Current during the Late Pleistocene: Analysis of modern faunalanalogs. Science, v.207, pp.64-66.
  • IMBRIE, J. and KIPP, N. (1971) A new micropaleontological method for quantitative paleoclimatology: application to a late pleistocene caribbean core. In: K.K. Turekian (Ed.), The late Cenozoic glacial ages. Yale Univ. Press, New Haven, pp.71-181.
  • KELLER, G. (1978) Morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in sediments of the marginal and central northeast Pacific Ocean and paleoclimatic interpretation. Jour. Foraminiferal Res., v.8, pp.208-224.
  • KENNETT, J.P. (1968) Latitudinal variation in Globigerina pachyderma (Ehrenberg) in surface sediments of the southwest Pacific Ocean. Micropal., v.14, pp. 305-318.
  • KENNETT, J.P. and SRINIVASAN, M.S. (1974) Stratigraphic occurrences of the Miocene planktonic foraminifer Globoquadrina dehiscens in early Pliocene sediments of the Indian Ocean. Rev. Esp. Micropaleontol., v.7, pp.5-14.
  • LEVITUS, S. and BOYER, T.P. (1994) World Ocean Atlas 1994, Volume 4: Temperature, NOAA Atlas NESDIS 4, US Department of Commerce.
  • LEVITUS, S., BURGETT, R. and BOYER, T.P. (1994) World Ocean Atlas 1994, v.3: Salinity, NOAA Atlas NESDIS 3, US Department of Commerce.
  • MALMGREN, B. and KENNETT, J.P. (1972) Biometric analysis of phenotypic variation: Globegerina pachyderma (Ehrenberg) in the South Pacific Ocean. Micropal., v.18, pp.241-248.
  • MIX, A.C. (1989) Pleistocene paleoproductivity: Evidence from organic carbon and foraminiferal species. In: W.H. Berger, V.S. Smetacek and G. Wefer (Eds.), Productivity of the Ocean: Present and Past. Wiley, New York, pp.313-340.
  • MOREY, A.E., MIX, A.C. and PISIAS, N.G. (2005) Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quaternary Sci. Rev., v. 24, nos. 7-9, pp.925-950.
  • MURRAY, J. (1897) On the distribution of the pelagic foraminifera at the surface and on the floor of the Ocean. National Ocean, Ecology, v.11, pp.17-27.
  • MURTY, C.S. and MURTY, V.S.N. (2001) Physical Oceanography. In: R. Sengupta and E. Desa (Eds.), The Indian Ocean - A Perspective, v.1, Oxford & I.B.H. Publ., New Delhi, pp.1-54.
  • NAIDU, P.D. and MALMGREN, B.A. (1996) Relationship between Late Quaternary upwelling history and coiling properties of Neogloboquadrina pachyderma and Globigerina bulloides in the Arabian Sea. J. Foraminifer. Res., v.26, pp.64-70.
  • ORTIZ, J.D., MIX, A.C. and COLLIER, R.W. (1995) Environmental control of living symbiotic and asymbiotic foraminifera of the California Current. Paleoceanography, v.10, pp.987-1000.
  • ORTIZ, J. andMIX, A. (1997). Comparison of Imbrie-Kipp transfer function and modern analog temperature estimates using sediment trap and core top foraminiferal faunas. Paleoceanography, v.12, pp.175-190.
  • REYNOLDS, L.A. and THUNELL, R.C. (1986) Seasonal production and morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in the northeast Pacific. Micropaleontology, v.32, pp.1-18.
  • SCHMIDT, D.N., RENAUD, S., BOLLMANN, J., SCHIEBEL, R. and THIERSTEIN, H.R. (2004) Size distribution of Holocene planktic foraminifer assemblages: Biogeography, ecology and adaptation. Mar. Micropal., v.50, pp.319-338.
  • SCHIEBEL, R., WANIEK, J., BORK, M. and HEMLEBEN, C. (2001) Planktic foraminiferal production simulated by chlorophyll redistribution and entrainment of nutrients. Deep-Sea Res., Part I, v.42, pp.721-740.
  • SCHOTT, G. (1942) Geographie des Atlantischen Ozeans. Boysen, Hamburg, 438p.
  • SPERO, H.J., LERCHE, I. and WILLIAMS, D.F. (1991) Opening the carbon isotope 'vital effect' box. 2. Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanogr., v.6, pp.639-655.
  • STRAMMA, L. (1992) The south Indian Ocean Current. Jour. Phys. Oceanogr., v.22, pp.325-347.
  • SVERDRUP, H.U., JOHNSON, M.W. and FLEMING, R.H. (1942) The Oceans. Prentice-Hall, Englewood Cliffs, New Jersey, 1087p.
  • UFKES, E. and ZACHARIASSE, W.J. (1993) Origin of coiling differences in living neogloboquadrinids in the Walvis Bay region, off Namibia, southwest Africa. Micropaleontology, v.39, no.3, pp. 283-287.
  • WATKINS, J.M., MIX, A.C. and WILSON, J. (1996) Living planktic foraminifera: tracers of circulation and productivity regimes in the central equatorial Pacific. Deep Sea Res. Part II, v.43, nos.4-6, pp.1257-1282.
  • WATKINS, J.M. andMIX, A.C. (1998) Testing the effects of tropical temperature, productivity, and mixed-layer depth on foraminiferal transfer functions. Paleoceanography, v.13, pp. 96-105.
  • WEFER, G., BERGER,W.H., BIJMA, J. and FISCHER, G. (1999) Clues to ocean history: a brief overview of proxies. In: G. Fischer and G. Wefer (Eds.), Use of Proxies in Paleoceanography - Examples from the South Atlantic. Springer-Verlag, Berlin Heidelberg, pp.1-68.
  • WYRTKI, K. (1971) Oceanographic atlas of International Indian Ocean Expedition. National Science Found., Washington DC, 531p.
  • ZERIC, S., DONNER, B., FISCHER, G., MULITZA, S. and WEFER, G. (2005) Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data. Mar. Micropal., v.55, pp.75-105.

Abstract Views: 194

PDF Views: 0




  • Environmental Implication on Chamber Accretion of Neogloboquadrina pachyderma (Ehrenberg) in Southern Indian Ocean

Abstract Views: 194  |  PDF Views: 0

Authors

N. Khare
National Centre for Antarctic and Ocean Research (Ministry of Earth Sciences), Headland Sada, Goa - 403 804, India
A. Mazumder
National Centre for Antarctic and Ocean Research (Ministry of Earth Sciences), Headland Sada, Goa - 403 804, India
P. Govil
National Centre for Antarctic and Ocean Research (Ministry of Earth Sciences), Headland Sada, Goa - 403 804, India
V. P. Singh
Department of Geology, Banaras Hindu University, Varanasi - 221 005, India

Abstract


Morphological variations with respect to the number of chambers in Neogloboquadrina pachyderma (Ehrenberg) were investigated in 25 surficial sediments of Indian Ocean taken along the N-S transect between 9.69° N and 55.01° S latitude and 80° E and 40° E longitude. The number of chamber was counted for at least 40 specimens picked for each sample. The average number of chamber was correlated with the average temperature and salinity along the changing latitude. The results showed a high correlation between the number of chambers and temperature and salinity. It was noted that number of chambers decreases from equatorial to polar region. The carbonate saturation and nutrient availability could possibly be other causes for the change in number of chambers. The results of this study, if applied on the subsurface marine sediments, will bear implications on paleoclimatic condition in the Indian Ocean region.

Keywords


Neogloboquadrina pachyderma, Number of Chambers, Temperature and Salinity, Equatorial to Polar Region, Indian Ocean.

References