Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Existence Results for Generalized Vector Equilibrium Problems under Upper Sign Continuity


Affiliations
1 Department of Mathematics, College of Basic Science, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran, Islamic Republic of
2 Department of Mathematics, Razi University, Kermanshah, 67149, Iran, Islamic Republic of
3 Department of Mathematics, Amirkabir University of Technology, Tehran, Iran, Islamic Republic of
     

   Subscribe/Renew Journal


In this paper, two kinds of the upper sign-continuity and pseudo-monotonicity in the setting of multivalued bifunctions with moving cones are introduced. Moreover,by applying the new definitions of the upper sign-continuity and pseudo-monotonicity via KKM theory, some existence results of solutions for two kinds of the generalized vector equilibrium problems are established. The results of the paper can be viewed as the extensions of the corresponding results in this area.

Keywords

C-Upper Sign Continuity, KKM-Mapping, Generalized Vector Equilibrium Problems, C-Pseudomonotone.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Q. H. Ansari, A. P. Farajzadeh and S. Schaible, Existence of solutions of strong vectror equilibrium problems, Taiw. J. Math, 16 (1). (2012), 165-178.
  • Q. H. Ansari, I. V. Konnov and J. C. Yao, On generalized vectror equilibrium problems, Nonlin. Anal, 47. (2001), 543-554.
  • Q. H. Ansari, W.Otteli and D. Schlager, A generalization of vectrorial equilibria, Mathematical Methods of Operations Research, 46. (1997), 147-152.
  • Q. H. Ansari, A. H. Siddigi and S. Y. Wu, Existence and duality of generalized vectror equilibrium problems, J. Math. Anal. Appl., 259. (2001), 115-126.
  • Q. H. Ansari and J.C. Yao, An existence result for generalized vectror equilibrium problems, Appl. Math. Letter, 12. (1999), 53-56.
  • E. Blum, W. Oettli, From optimization and varitional inequalities to equilibrium problems , Mathematics Student, 63. (93), 123-145.
  • M. Bianchi and R. Pini, Coercivity conditions for equilibrium problems, J. Optim. Theory Appl., 124. (2005), 79-92.
  • G. Y. Chen and G. M. Cheng, Vector variational inequalities and vector optimization, in: Lecture notes in Economics and Mathematical Systems, 258, 408-416, Springer, Heidelberg, 1987.
  • G.Y. Chen, X. X. Huang and X. Q. Yang, Vector optimization: multi-Valued and Variational Analysis, Springer, Berlin, (2005).
  • J. Dugundji, A. Granas, Fixed Point Theory, Springer-Verlag, Berlin, 2003.
  • K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann, 266. (1984), 519-537.
  • K. Fan, A minimax theorem for vector-valued functions, J. Optim. Theory Appl, 60. (1989), 19-31.
  • A. P. Farajzadeh and A. Amini-Harandi, On generalized implicit vector variational inequality problems, Indian J. Pure Appl. Math, 42 (2). (2011), 127-140.
  • Y. P. Fang and N. J. Huang, Existence results for generalized implicit vector variational inequalities with multivalued mappings, Indian J. Pure Appl. Math, 36 (11). (2005), 629-640.
  • A. P. Farajzadeha and J. Zafarani, Equilibrium problems and variational inequalities in topological vector spaces, Optimization, 59 (4). (2010), 485-499.
  • F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problems. In: R.W. Cottle, F. Giannessi, J.L. Lions, (EDs.) Variational Inequalities and Complementarity Problems, 151-186. Wiley, New York, 1980.
  • N. Hadjisavvas, Continuity and maximality properties of pseudomonotone operators, J. Convex Analysis, 10. (2003), 465-475.
  • A. N. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlin. Anal, 52. (2003), 621-635.
  • M. A. Noor and W. Oettli, On generalized nonlinear complementarity problems and quasi equilibria, Le Math, 49. (1994), 313-331.
  • N. T. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Math. Nachr, 122. (1985), 231-245.
  • H. Y. Yin and C. X. Xu, Vector variational inequality and implicit vector complementarity problems, in Vector Variational Inequalities and Vector Equilibria "(F. Giannessi, Eds.), Kluwer, Dordrechet, Holland, (2000) 491-505

Abstract Views: 304

PDF Views: 0




  • Existence Results for Generalized Vector Equilibrium Problems under Upper Sign Continuity

Abstract Views: 304  |  PDF Views: 0

Authors

M. Rahimi
Department of Mathematics, College of Basic Science, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran, Islamic Republic of
A. P. Farajzadeh
Department of Mathematics, Razi University, Kermanshah, 67149, Iran, Islamic Republic of
S. M. Vaezpour
Department of Mathematics, Amirkabir University of Technology, Tehran, Iran, Islamic Republic of

Abstract


In this paper, two kinds of the upper sign-continuity and pseudo-monotonicity in the setting of multivalued bifunctions with moving cones are introduced. Moreover,by applying the new definitions of the upper sign-continuity and pseudo-monotonicity via KKM theory, some existence results of solutions for two kinds of the generalized vector equilibrium problems are established. The results of the paper can be viewed as the extensions of the corresponding results in this area.

Keywords


C-Upper Sign Continuity, KKM-Mapping, Generalized Vector Equilibrium Problems, C-Pseudomonotone.

References