Open Access
Subscription Access
Open Access
Subscription Access
On Perturbation of Weighted G−Banach Frames in Banach Spaces
Subscribe/Renew Journal
In the present paper, we study perturbation of weighted g−Banach frames in Banach spaces and obtain perturbation results for weighted g−Banach frames. Also, sufficient conditions for the perturbation of weighted g−Banach frames by positively confined sequence of scalars and uniformly scaled version of a given weighted g−Banach Bessel sequence have been given. Finally, we give a condition under which the sum of finite number of sequences of operators is a weighted g−Banach frame by comparing each of the sequences with another system of weighted g−Banach frames in Banach spaces.
Keywords
Frame, Banach Frame, g−Banach Frame.
Subscription
Login to verify subscription
User
Font Size
Information
- M. R. Abdollahpour, M. H. Faroughi and A. Rahimi, PG-Frames in Banach spaces, Methods of Functional Analysis and Topology, 13(3)(2007), 201-210.
- P. Balazs, J. P. Antonie and A. Grybos, Weighted and controlled frames, Inter. J. Wavelets, Multiresolution and Information Processing, 8(1)(2010), 109-132.
- I. Bogdanova, P. Vanderghenyst, J. P. Antoine, L. Jacques and M. Morvidone, Stereographic wavelet frames on the sphere, Applied Comput. Harmon. Anal., 19(2005), 223-252.
- P. G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl., 3(5)(1997), 543-557.
- P. G. Casazza and O. Christensen, Frames containing a Riesz basis and preservation of this property under perturbations, SIAM J.Math. Anal., 29(1)(1998), 266-278.
- O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123(4)(1995), 1217-1220.
- O. Christensen, An introduction to Frames and Riesz Bases, Birkhauser, 2003.
- I. Daubechies, A. Grossman and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27(1986), 1271-1283.
- R. J. Duffin and A. C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341-366.
- S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comp. Harmon. Anal.,2(2)(1995), 160-173.
- H. G. Feichtinger and K. H. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Function spaces and Applications, Lecture Notes in Mathematics, Vol. 1302 (1988), 52-73.
- K. H. Gröchenig, Describing functions: Atomic decompositions versus frames, Monatsh. fur Mathematik, 112(1991), 1-41.
- G. S. Rathore and Tripti Mittal, On G-Banach frames, Jordan J. Maths. Statistics (JJMS), 12(4)(2019), 498-519.
- G. S. Rathore and Tripti Mittal, On Weighted G-Banach frames in Banach Spaces, Poincare J. Anal. Appl. (2(II)), Special Issue (IWWFA-III, Delhi), (2018) 13-26.
- L. Vashisht and S. Sharma, On weighted Banach frames, Commun. Math. Appl., 3(3)(2012), 283-292.
- D. Walnut, Weyl-Heisenberg Wavelet Expansions: Existence and Stability in Weighted Spaces, Ph.D. Thesis, University of Maryland, College Park, MD, 1989.
Abstract Views: 347
PDF Views: 1