Open Access
Subscription Access
Open Access
Subscription Access
A (0;0,2) Interpolation Method to Approximate Functions via Ultraspherical Polynomials
Subscribe/Renew Journal
The object of this paper is to demonstrate the existence, explicit characterization and estimation of the polynomial interpolation, related to the weighted (0;0,2) interpolation which satisfies the boundary conditions together with the interpolation conditions at the interval [−1, 1].
Keywords
Lagrange Interpolation, Ultraspherical Polynomials, Fundamental Polynomials, Explicit Form, Order of Convergence.
Subscription
Login to verify subscription
User
Font Size
Information
- I. E. Gopengaus, On the The Theorem of A.F. Timan on Approximation of Continuous Functions on a line segment, Math. Zametski, 2. (1967), 163–172.
- I. Joo and L. Szili, On weighted (0,2)-Interpolation on the ischolar_mains of Jacobi polynomials, Acta Math. Hung., 66. (1–2)(1995), 25–50.
- J. Prasad, On the weighted (0,2) interpolation, SIAM J. Numer. Anal., 7. (1970), 428– 446.
- M. Lenard, Simultaneous approximation to a differentiable function and its derivative by P´al-type interpolation on the ischolar_mains of Jacobi polynomials, Annales Univ.Sci.Budapest., Sect.Comp., 20. (2001), 71–82.
- P. Mathur and S. Dutta, On Pal type weighted lacunary (0, 2; 0)-interpolation on infinite interval, Approx.Theory and its Appl., 17. (4)(2001), 1–10.
- R. Srivastava and Yamini Singh, An Analysis of Interpolatory polynomials on finite interval, Int. J. Math. And Appl., 6. (1-E)(2018), 867–875.
- R. Srivastava and Yamini Singh, An Interpolation Process on the Roots of Ultraspherical Polynomials, Applications and Applied Mathematics, 13. (2)(2018), 1132-1141.
- G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., 23., New york, 1939.
- T. F. Xie and S. P. Zhou, On simultaneous approximation to a differentiable function and its derivative by Pal-type interpolation polynomials, Acta Math. Hungar., 69. (1995), 135–147.
Abstract Views: 710
PDF Views: 0