Open Access
Subscription Access
Open Access
Subscription Access
On the Convergence of Bochner-Riesz’s Spherical Means of Fourier Double Integrals
Subscribe/Renew Journal
In this paper we consider the convergence by measure of Fourier integral spherical means of Riesz at a critical exponent δ = 1/2 after changing the values of the integrable function on the given set of a small measure.
Keywords
Double integrals, spherical means, convergence
Subscription
Login to verify subscription
User
Font Size
Information
- S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc., 40 (1936), 175–207.
- B. I. Golubov, On the convergence of Riesz spherical means of multiple Fourier series and integrals of functions of bounded generalized variation, Mat. Sb., 89(131) (1972), 630–653; English transl. Math. USSR Sb., 18 (1972).
- B. I. Golubov, The summability of conjugate multiple Fourier integrals by Riesz means, Uspehi Mat. Nauk, 31no. 5(191) (1976), 237–238, (in Russian).
- M. G. Grigorian, Uniform convergence of the greedy algorithm with respect to the Walsh system, Studia Math., 198(2) (2010), 197–206.
- M. G. Grigorian, On the Lp-strong property of orthonormal systems, Math. Sb. 194:10, 77–106 (in Russ.), English transl. Sbornik: Math. 194:10 (2003), 1503–1532.
- M. G. Grigorian, On the convergence of Fourier series in the metric of L1, Analysis Math., (1991), 17(3), 211–237.
- M. G. Grigoryan and L. N. Galoyan, On the uniform convergence of negative order Cesaro means of Fourier series, J. Math. Anal. Appl., 434 (1) (2016), 554–567.
- M. G. Grigoryan, and A. A. Sargsyan, On the universal functions for the class Lp[0, 1], J. Functional Analysis, 270 (2016), 3111–3133.
- M. G. Grigoryan, Modifications of functions, Fourier coefficients and nonlinear approximation, Matem. Sb., 203 (3) (2012), 49–78.
- N. N. Luzin, On the fundamental theorem of the integral calculus, Mat. Sb. 28 (1912), 266–294 (in Russian).
- D. E. Men‘shov, Sur la convergence uniforme des series de Fourier, Mat. Sb. 11(53) (1942), 67–96, (French-Russian summary).
- E. M. Stein, On limits of sequences of operators, Ann. of Math., 74 (1961), 140–170.
- E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean Spaces, Princeton University Press, PMS Vol. 32, 1971.
Abstract Views: 255
PDF Views: 0