Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Generalized Fusion Frame in A Tensor Product of Hilbert Space


Affiliations
1 Department of Pure Mathematics, University of Calcutta, Kolkata, 700019, India
2 Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, India
     

   Subscribe/Renew Journal


Generalized fusion frames and some of their properties in a tensor product of Hilbert spaces are studied. Also, the canonical dual g-fusion frame in a tensor product of Hilbert spaces is considered. The frame operator for a pair of g-fusion Bessel sequences in a tensor product of Hilbert spaces is presented.


Keywords

Frame, Fusion Frame, G-Frame, G-Fusion Frame, Frame Operator, Tensor Product of Hilbert Spaces, Tensor Product of Frames.
Subscription Login to verify subscription
User
Notifications
Font Size


  • M. S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl., 308 (2005) 541–553.
  • P. Casazza and G. Kutyniok, Frames of subspaces, Cotemporary Math., AMS 345 (2004), 87–114.
  • O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, 2008.
  • R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, (1952), 341–366.
  • G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press BOCA Raton, Florida, 1995.
  • P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871–879.
  • P. Ghosh and T. K. Samanta, Stability of dual g-fusion frame in Hilbert spaces, Methods Funct. Anal. Topology, 26 (3) (2020), 227–240.
  • P. Ghosh and T. K. Samanta, Generalized atomic subspaces for operators in Hilbert spaces, Math. Bohem., (Accepted), DOI: 10.21136/MB.2021.0130-20
  • P. Ghosh and T. K. Samanta, Fusion frame and its alternative dual in tensor product of Hilbert spaces, arXiv:2105.03094.
  • Amir Khoravi and M. S. Asgari, Frames and Bases in Tensor Product of Hilbert spaces, Intern. Math. J., 4(6), (2003), 527–537.
  • Amir Khosravi and M. Mirzaee Azandaryani, Fusion frames and g-frames in tensor product and direct sum of Hilbert spaces, Appl. Anal. Discrete Math., 6 (2012), 287–303.
  • S. Rabinson, Hilbert space and tensor products, Lecture notes, September 8, 1997.
  • V. Sadri, Gh. Rahimlou, R. Ahmadi and R. Zarghami Farfar, Generalized Fusion Frames in Hilbert Spaces, arXiv: 1806.03598v1, Submitted (2018).
  • W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. 322 (1) (2006), 437–452.
  • G. Upender Reddy, N. Gopal Reddy and B. Krishna Reddy, Frame operator and Hilbert- Schmidt operator in tensor product of Hilbert spaces, J. Dynamical Systems and Geometric Theories, 7(1) (2009), 61–70.

Abstract Views: 184

PDF Views: 0




  • Generalized Fusion Frame in A Tensor Product of Hilbert Space

Abstract Views: 184  |  PDF Views: 0

Authors

Prasenjit Ghosh
Department of Pure Mathematics, University of Calcutta, Kolkata, 700019, India
T. K. Samanta
Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, India

Abstract


Generalized fusion frames and some of their properties in a tensor product of Hilbert spaces are studied. Also, the canonical dual g-fusion frame in a tensor product of Hilbert spaces is considered. The frame operator for a pair of g-fusion Bessel sequences in a tensor product of Hilbert spaces is presented.


Keywords


Frame, Fusion Frame, G-Frame, G-Fusion Frame, Frame Operator, Tensor Product of Hilbert Spaces, Tensor Product of Frames.

References





DOI: https://doi.org/10.18311/jims%2F2022%2F29307