Open Access
Subscription Access
Open Access
Subscription Access
Local Nullstellensatz over Commutative Ground Rings
Subscribe/Renew Journal
It is shown that a local Nullstellensatz holds over an arbitrary commutative ring A (with identity 1 ≠ 0); specifically, if B = A[x1, . . . , xn] is a finitely generated extension ring of A and N is a maximal ideal in B, then NBN = (N ∩ A, x1 − c1, . . . , xn − cn)BN for some c1, . . . , cn ∈ BN .
Keywords
G-Ideal, Nullstellensatz, Maximal Ideal, Polynomial Ring.
Subscription
Login to verify subscription
User
Font Size
Information
- D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995.
- I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
- P. Kemp, L. J. Ratliff, Jr., and K. Shah, Depth one homogeneous prime ideals in polynomial rings over a field, Journal of Indian Math. Soc. (accepted).
- M. Nagata, Local Rings, Interscience, John Wiley, New York, 1962.
- O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, D. Van Nostrand, New York, 1958.
- O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, D. Van Nostrand, New York, 1960.
Abstract Views: 185
PDF Views: 0