Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Local Nullstellensatz over Commutative Ground Rings


Affiliations
1 Department of Mathematics, Missouri State University, Springfield, Missouri 65897, United States
2 Department of Mathematics, University of California, Riverside, California 92521-0135, United States
     

   Subscribe/Renew Journal


It is shown that a local Nullstellensatz holds over an arbitrary commutative ring A (with identity 1 ≠ 0); specifically, if B = A[x1, . . . , xn] is a finitely generated extension ring of A and N is a maximal ideal in B, then NBN = (N ∩ A, x1 − c1, . . . , xn − cn)BN for some c1, . . . , cn ∈ BN .


Keywords

G-Ideal, Nullstellensatz, Maximal Ideal, Polynomial Ring.
Subscription Login to verify subscription
User
Notifications
Font Size


  • D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995.
  • I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
  • P. Kemp, L. J. Ratliff, Jr., and K. Shah, Depth one homogeneous prime ideals in polynomial rings over a field, Journal of Indian Math. Soc. (accepted).
  • M. Nagata, Local Rings, Interscience, John Wiley, New York, 1962.
  • O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, D. Van Nostrand, New York, 1958.
  • O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, D. Van Nostrand, New York, 1960.

Abstract Views: 185

PDF Views: 0




  • Local Nullstellensatz over Commutative Ground Rings

Abstract Views: 185  |  PDF Views: 0

Authors

Paula Kemp
Department of Mathematics, Missouri State University, Springfield, Missouri 65897, United States
Louis J. Ratliff
Department of Mathematics, University of California, Riverside, California 92521-0135, United States
Kishor Shah
Department of Mathematics, Missouri State University, Springfield, Missouri 65897, United States

Abstract


It is shown that a local Nullstellensatz holds over an arbitrary commutative ring A (with identity 1 ≠ 0); specifically, if B = A[x1, . . . , xn] is a finitely generated extension ring of A and N is a maximal ideal in B, then NBN = (N ∩ A, x1 − c1, . . . , xn − cn)BN for some c1, . . . , cn ∈ BN .


Keywords


G-Ideal, Nullstellensatz, Maximal Ideal, Polynomial Ring.

References