Open Access
Subscription Access
Open Access
Subscription Access
Fifth Hankel Determinant for Multivalent Bounded Turning Functions of Order
Subscribe/Renew Journal
The objective of this paper is to estimate an upper bound for the third, fourth and fifth Hankel determinants for the class of multivalent holomorphic functions, whose derivative has a positive real part of order α(0 ≤ α < 1). Further we investigate bound for 2-fold symmetric functions.
Keywords
Holomorphic Function, Upper Bound, Hankel Determinant, Carath´eodory Function.
Subscription
Login to verify subscription
User
Font Size
Information
- M. Arif, L. Rani, M. R. and P. Zaprawa, Fourth Hankel Determinant for the Set of Star-Like Functions, Mathematical Problems in Engineering, (2021), https://doi.org/10.1155/2021/6674010.
- M. Arif, I. Ullah, M. Raza and P. Zaprawa, Investigation of the Fifth Hankel determinant for a family of functions with bounded turning, Math. Slov., 70 (2) (2020), 319 - 328 .
- K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, 6 (2010), 1 - 7.
- P. L. Duren, Univalent functions, Vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
- T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (52) (2010), 2573 - 2585.
- A. Janteng, S. A. Halim and M. Darus, Hankel Determinant for starlike and convex functions, Int. J. Math. Anal., 1 (13) (2007), 619 - 625.
- A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2) (2006), 1 - 5.
- R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (2) (1983), 251 - 257.
- A. E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (3) (1969), 545 - 552.
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (3) (1962), 532 - 537.
- Ch. Pommerenke, Univalent functions, Gottingen: Vandenhoeck and Ruprecht; 1975.
- Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41 (1966), 111 - 122.
- B. Rath, K. S. Kumar, D. V. Krishna, A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order 1/2, Complex Anal. Oper. Theory, (2022), https://doi.org/10.1007/s11785-022-01241-8.
- D. Vamshee Krishna and T. RamReddy, Coefficient inequality for certain p- valent analytic functions, Rocky Mountain J. Math., 44 (6) (2014), 1941 - 1959.
Abstract Views: 275
PDF Views: 0