Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Some Results Involving the pRq(α,β,z) Function


Affiliations
1 Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology,Surat-395007, India
2 Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology , Surat-395007, India
     

   Subscribe/Renew Journal


The main aim of this paper is to discuss some classical properties of the pRq(α, β; z) function such as integrals involving pRq(α, β; z) function and its product with some algebraic functions and higher Tanscendental function viz, Hermite polynomial, Legendre polynomial, Legendre function, Jacobi polynomial, Galue type Struve function, six summation formulas of pRq(α, β; z) function and relation betweenpRq(α, β; z) and pRq(α, β;- z) functions.

Keywords

Gamma Function, Beta Function, Hermite Polynomial, Legendre Polynomial, Legendre Function, Jacobi Polynomial, Galue Type Struve Function(GTSF).
Subscription Login to verify subscription
User
Notifications
Font Size


  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, UK, 2001.
  • R. Desai, A. K. Shukla, Some results on function pRq(α, β; z), J. Math. Anal. Appl., 448 (1)(2017), 187 – 197.
  • R. Desai, A. K. Shukla, Note on the pRq(α, β; z) function, J. Indian Math. Soc., 88 (3-4)(2021), 288 – 297.
  • A. Erd´elyi, H. Bateman, Higher transcendental functions. Vol. I, McGraw-Hill, New York, 1953.
  • S. Haq, A. H. Khan, K. S. Nisar, A Study of New Class of Integrals Associated with Generalized Struve Function and Polynomials, Commun. Korean Math. Soc., 34 (1)(2019), 169 – 183.
  • R. B. Paris, A Kummer-type Transformation for a2F2 Hypergeometric Function, J. Comput. Appl. Math., 173 (2)(2005), 379 – 382.
  • E. D. Rainville, Special Functions, Mcmillan, New York, 1960.
  • H. M. Srivastava, Certain Summation Formulas Involving Generalized Hypergeometric Function, Comment Math. Univ. St. Pauli, XXI-2 (1972), 25 – 34.

Abstract Views: 267

PDF Views: 1




  • Some Results Involving the pRq(α,β,z) Function

Abstract Views: 267  |  PDF Views: 1

Authors

Yogesh M. Thakkar
Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology,Surat-395007, India
Ajay Shukla
Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology , Surat-395007, India

Abstract


The main aim of this paper is to discuss some classical properties of the pRq(α, β; z) function such as integrals involving pRq(α, β; z) function and its product with some algebraic functions and higher Tanscendental function viz, Hermite polynomial, Legendre polynomial, Legendre function, Jacobi polynomial, Galue type Struve function, six summation formulas of pRq(α, β; z) function and relation betweenpRq(α, β; z) and pRq(α, β;- z) functions.

Keywords


Gamma Function, Beta Function, Hermite Polynomial, Legendre Polynomial, Legendre Function, Jacobi Polynomial, Galue Type Struve Function(GTSF).

References





DOI: https://doi.org/10.18311/jims%2F2023%2F29001