Open Access
Subscription Access
Open Access
Subscription Access
The Z-Classes of Isometries
Subscribe/Renew Journal
Let G be a group. Two elements x, y are said to be in the same z-class if their centralizers are conjugate in G. Let V be a vector space of dimension n over a field F of characteristic different from 2. Let B be a non-degenerate symmetric, or skew-symmetric, bilinear form on V. Let I(V,B) denote the group of isometries of (V,B). We show that the number of z-classes in I(V,B) is finite when F is perfect and has the property that it has only finitely many field extensions of degree at most n.
Keywords
Conjugacy Classes, Centralizers, Z-Classes, Orthogonal and Symplectic Groups.
Subscription
Login to verify subscription
User
Font Size
Information