Open Access
Subscription Access
Open Access
Subscription Access
The Z-Classes of Isometries
Subscribe/Renew Journal
Let G be a group. Two elements x, y are said to be in the same z-class if their centralizers are conjugate in G. Let V be a vector space of dimension n over a field F of characteristic different from 2. Let B be a non-degenerate symmetric, or skew-symmetric, bilinear form on V. Let I(V,B) denote the group of isometries of (V,B). We show that the number of z-classes in I(V,B) is finite when F is perfect and has the property that it has only finitely many field extensions of degree at most n.
Keywords
Conjugacy Classes, Centralizers, Z-Classes, Orthogonal and Symplectic Groups.
Subscription
Login to verify subscription
User
Font Size
Information
- T. Asai, The conjugacy classes in the unitary, symplectic and orthogonal groups over an algebraic number field, J. Math. Kyoto. Univ, 16–2 (1976), 325 – 350.
- A. Borel and J. de Siebenthal, Les sous-groupes de rang maximum des groupes de Lie clos (French), Comment. Math. Helv. 23 (1949), 200 – 221.
- N. Burgoyne and R. Cushman, Conjugacy classes in linear groups, J. Algebra 44 (1977), 339 – 362.
- W. S. Cao and K. Gongopadhyay, Algebraic characterization of isometries of the complex and the quaternionic hyperbolic planes, Geom. Dedicata, Volume 157, Number 1 (2012), 23 – 39.
- W. S. Cao and K. Gongopadhyay, Commuting isometries of the complex hyperbolic space, Proc. Amer. Math. Soc. 139 (2011), 3317 – 3326.
- K. Gongopadhyay, Algebraic characterization of the isometries of the hyperbolic 5-space, Geom. Dedicata, Volume 144, Number 1 (2010), Page 157 – 170.
- K. Gongopadhyay, Algebraic characterization of isometries of the hyperbolic 4-space, ISRN Geometry (2012), Article ID 757489, doi: 10.5402/2012/757489.
- K. Gongopadhyay, The z-classes of quaternionic hyperbolic isometries, J. Group Theory 16 (2013), 941 – 964.
- K. Gongopadhyay and R. S. Kulkarni, z-Classes of isometries of the hyperbolic space, Conform. Geom. Dyn. 13 (2009), 91 – 109.
- K. Gongopadhyay and R. S. Kulkarni, On the existance of invariant non-degenerate bilinear form under a linear map. Linear Algebra Appl. 434 (2011), Issue 1, 89 – 103.
- R. Gouraige, z-classes of elements in central simple algebras, Thesis, City University of New York (2006).
- J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, No. 21. Springer-Verlag, New York-Heidelberg, 1975.
- V. Jadhav, R. Kitture and R. S. Kulkarni, The z-classes in finite groups, Preprint.
- C. Kiehm, Equivalence of bilinear forms, J. Algebra 31 (1974), 45 – 66.
- R. S. Kulkarni, Dynamics of linear and affine maps, Asian J. Math. 12 (2008), no. 3, 321 – 344.
- R. S. Kulkarni, Dynamical types and conjugacy classes of centralizers in groups, J. Ramanujan Math. Soc. 22 (2007), no. 1, 35 – 56.
- J. Milnor, On isometries of inner product spaces. Invent. Math. 8 (1969), 83 – 97.
- A. Singh, Conjugacy Classes of Centralizers in G2, J. Ramanujan Math. Soc. 23 (2008), no. 4, 327 – 336.
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (Princeton 1968/69), 167 – 266, Lecture Notes in Mathematics 131, Springer-Verlag (1970).
- R. Steinberg, Conjugacy Classes in Algebraic Groups, notes by V. Deodhar, Lecture Notes in Mathematics 366, Springer-Verlag (1974).
- G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1 – 63.
- H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen I, II, III and Nachtrag (German), I: Math Z. 23 (1925), no. 1, 271 – 309, II: Math. Z. 24 (1926), no. 1, 328 – 376, III: Math. Z. 24 (1926), no. 1, 377 – 395, Nachtrag: Math. Z. 24 (1926), no. 1, 789 – 791.
- J. Williamson, Normal matrices over an arbitrary field of characterrstrc zero, Amer. J. Math 61 (1939), 335 – 356.
Abstract Views: 263
PDF Views: 0