Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Justification of the Asymptotic Analysis of Linear Shallow Shells


Affiliations
1 Department of Mathematics, Indian Institute of Space Science and Technology, Valiamala P.O, Trivandrum-695 547, India
     

   Subscribe/Renew Journal


Two dimensional model of linearly elastic shallow shells is derived in [1] under suitable scalings on the unknowns and the data. In this paper we justify the scalings used in [1] to derive the two dimensional shallow shell model.

Keywords

Elasticity, Shallow Shells.
Subscription Login to verify subscription
User
Notifications
Font Size


  • S. Busse, P. G. Ciarlet and B. Miara, Justification d'un modele lineaire bi-dimensional de coques "faiblment courbees" en coordonnees curvilignes, M2 N A, 31 (1997), 409-434.
  • P. G. Ciarlet, Plates and junctions in elastic multistructures, An asymptotic analysis, Masson, Paris, 1990.
  • P. G. Ciarlet and P. Destuynder, A justification of the two dimensional plate model, J. Mechanique, 18 (1978), 315-344.
  • P. G. Ciarlet and P. Destuynder, A justification of a non-linear model in plate theory model, Camp. Methods in App!. Mech. Engrg, 17/18, (1979), 227-258.
  • P. G. Ciarlet and S. Kesavan, Two-dimensional approximation of three-dimensional eigenvalue problem in plate theory, Camp. Methods in App!. Mech. Engrg., 26 (1981), 145-172.
  • P. G. Ciarlet and V. Lads, Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equation, Arch. Rational Mech. Ana!., 136 (1996), 119-16l.
  • P. G. Ciarlet and V. Lads, Asymptotic analysis of linearly elastic shells, III Justification of Koiter's shell equations, Arch.Rationa!.Mech.Ana!',136 (1996), 191-200.
  • P. G. Ciarlet, V. Lads and B. Miara, Asymptotic analysis of linearly elastic shells. II.Justification of flexural shell equations, Arch. Rational Mech. Ana!., 136 (1996), 162190.
  • P. G. Ciarlet and B. Miara, Justification of the two-dimensional equations of a linearly elastic shell, Comm. Pure and App!. Math; 45 (1992), 327-360.
  • S. Kesavan and N. Sabu, Two dimensional approximation of eigenvalue problem in shallow shells, Math. Mech. Solids, 4, 441-460.
  • S. Kesavan and N. Sabu, Two-dimensional approximation of eigenvalue problem for flexural shells, Chinese Annals Maths., 21 B (2000), 1-16.
  • H. Le Dret, Problems Variationnels dans les Multi-Bomains, Modelisation des jonctions et Applications, 1991, Masson, Paris.
  • J. L. Lions, Perturbations Singulieres dans les Problems aux limites et en Controle Optimal. Lecture Notes in Math., Va!. 323, Springer-verlag, Berlin, 1973.
  • B. Miara, Justification of the asymptotic analysis of elastic plates, I. linear case, Asymptotic analysis, 9 (1994), 47-60.
  • B. Miara, Justification of the asymptotic analysis of elastic plates, I. Non linear case, Asymptotic analysis, 9 (1994), 119-134.
  • N. Sabu, Vibrations of piezoelectric flexural shells: Two dimensional approximation, J. Elasticity, 68 (2000), 145-165.
  • N. Sabu., Vibrations of piezoelectric shallow shells: Two dimensional approximation, Proc. Indian Acad. Sci;(Math Sci), 113 (2003), 333-352.

Abstract Views: 236

PDF Views: 0




  • Justification of the Asymptotic Analysis of Linear Shallow Shells

Abstract Views: 236  |  PDF Views: 0

Authors

J. Raja
Department of Mathematics, Indian Institute of Space Science and Technology, Valiamala P.O, Trivandrum-695 547, India
N. Sabu
Department of Mathematics, Indian Institute of Space Science and Technology, Valiamala P.O, Trivandrum-695 547, India

Abstract


Two dimensional model of linearly elastic shallow shells is derived in [1] under suitable scalings on the unknowns and the data. In this paper we justify the scalings used in [1] to derive the two dimensional shallow shell model.

Keywords


Elasticity, Shallow Shells.

References