Open Access
Subscription Access
Open Access
Subscription Access
Finite Group Actions on Kan Complexes
Subscribe/Renew Journal
We study simplicial action of groups on one vertex Kan complexes. We show that every semi-direct product of the fundamental group of an one vertex Kan complex with a finite group can be simplicially realized. We also calculate the cohomology of the fixed point set of a finite p-group action on an one vertex aspherical Kan complex.
Keywords
Kan Complexes, Covering Spaces, Group Actions.
Subscription
Login to verify subscription
User
Font Size
Information
- H. Cartan, Sur la cohomologie des espaces ou opere un groupe: etude d'un anneau differentiel ou opere un groupe: etude d'un anneau differential ou opere un groupe, C. R. Acad. Sci. Paris, 226, (1948), 303-305.
- P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga.), 1969, Markham, Chicago, Ill., 1970, 227-264.
- P. E. Conner and F. Raymond, Manifolds with few periodic homeomorphisms. In Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part II, Lecture Notes in Math., Vol. 299, Berlin, 1972, Springer, 1-75.
- P. E. Conner and Frank Raymond. Realizing finite groups of homeomorphisms from homotopy classes of self-homotopy-equivalences. In Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), Univ. Tokyo Press, Tokyo, 1975, 231-237.
- P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83(1), (1977), 36-85.
- P. E. Conner, F. Raymond, and P. J. Weinberger, Manifolds with no periodic maps. Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971), Part II, Lecture Notes in Math., Vol. 299, Berlin, 1972. Springer, 36-85.
- V. K. A. M. Gugenheim, On a theorem of E. H. Brown. Illinois J. Math., 4, 1960, 292-311.
- P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Mathematics, Vol 174, Birkhauser Verlag, Basel, 1999.
- J. P. May, A generalization of Smith theory, Proc. Amer. Math. Soc., 101(4), (1987), 728-730.
- J. P. May, Kan complexes, Covering spaces, group action, Simplicial objects in algebraic topology, Reprint of the 1967 original, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992.
- P. A. Smith, Transformations of finite period, Ann. of Math. (2), 39(1), (1938), 127-164.
Abstract Views: 243
PDF Views: 0