Open Access Open Access  Restricted Access Subscription Access

A Possible Role of the Energetically Excited Quantum Vacuum in Cosmology: A Potential Solution to the Horizon and Flatness Problems-The Excitation Energy Dominated Era


Affiliations
1 D - 67061 Ludwigshafen, Germany., Germany
 

The cosmological model presented here rests on the postulate that the universe can be described as an interacting attraction (exerted by matter) and repulsion (exerted by the excitation energy of the quantum vacuum) system in viral equilibrium. The basic parameters of the model, the matter density and the excitation energy of the quantum vacuum are determined by observations and are not adjusted to the model. The model requires only a few assumptions that can be deduced from the laws of conventional physics and from the rules of quantum field theory. Existing problems in standard cosmology, such as the flatness and the horizon problems, among others, can be resolved in a straightforward way without inflation and without recourse to dark matter and dark energy.

Keywords

Flatness Problem, Horizon Problem, Cosmic Microwave Background Anisotropy, Isothermization, Thermalization.
User
Notifications
Font Size

  • Sheldon E. Albert Einstein’s relativistic road ‘less traveled’ A review The road to relativity: the history and meaning of Einstein’s ‘The Foundation of General Relativity’, by Albert Einstein (Facsimile German Manuscript) and foreword by John Stachel, with annotations and commentary by Hanoch Gutfreund and Jürgen Renn. Contemp. Phys. 2016;57(2):250- 4.
  • Hubble E. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the national academy of sciences. 1929;15(3):168-73.
  • Einstein A, De Sitter W. On the Relation between the Expansion and the Mean Density of the Universe. Proceedings of the National Academy of Sciences. 1932;18(3):213-4.
  • Friedmann, A. Über die Krümmung des Raumes. Zeitschrift für Physik. 1922;10, 377-86
  • Guth AH. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D. 1981;23(2):347.
  • Penrose R. Difficulties with inflationary cosmology. Annals of the New York Academy of Sciences. 1989;571:249-64.
  • Steinhardt PJ. Is the theory at the heart of modern cosmology deeply awed?. Scientific American. 2011.
  • Ijjas A, Steinhardt PJ, Loeb A. Inflationary paradigm in trouble after Planck2013. Phys. Lett. B. 2013;723(4-5):261-6.
  • Turner MS, Weinberg EJ. Pre-big-bang inflation requires fine-tuning. Phys. Rev. D. 1997;56(8):4604.
  • McCoy CD. Does inflation solve the hot big bang model׳ s fine-tuning problems?. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 2015;51:23-36.
  • Freedman WL. Cosmology at crossroads: Tension with the Hubble constant. arXiv preprint arXiv:1706.02739. 2017.
  • Mörtsell E, Dhawan S. Does the Hubble constant tension call for new physics?. J. Cosmol. Astropart. Phys. 2018;2018(09):025.
  • Lineweaver CH, Barbosa D, Blanchard A, et al. Cosmic Microwave Background Observations: Implications for Hubble’s Constant and the Spectral Parameters n and Q. Astrophysics. 2008.
  • Blanchard A, Douspis M, Rowan-Robinson M, et al. An alternative to the cosmological “concordance model”. Astron. Astrophys.2003;412(1):35-44.
  • Marosi LA. Is the Velocity Interpretation of the Redshift of Spectral Lines in Accordance with Astronomical Data?. Int. J. Astron. Astrophys. 2017;7(4):248-54.
  • Marosi LA. Hubble diagram test of 280 supernovae redshift data. J. Mod. Phys. 2014.
  • Marosi LA. Modelling and Analysis of the Hubble Diagram of 280 Type SNIa Supernovae and Gamma Ray Bursts Redshifts with Analytical and Empirical Redshift/Magnitude Functions. Int. J. Astron. Astrophys.2016;6(3):272-5.
  • Marosi LA. Extended Hubble diagram on the basis of gamma ray bursts including the high redshift range of z= 0.0331- 8.1. Int. J. Astron. Astrophys. 2019;9(01):1.
  • Vigoureux JM, Vigoureux D, Vigoureux P, et al. Analysis of the Hubble diagram of type SNe Ia supernovae and of gamma-ray bursts. A comparison between two models. arXiv preprint arXiv:1804.03519. 2018.
  • Sandage A, Munch G, Mamaso A, et al. The universe at large. Key issues in astronomy and cosmology.
  • Sandage A, Perelmuter JM. The surface brightness test for the expansion of the universe. II-Radii, surface brightness, and absolute magnitude correlations for nearby E galaxies. Astrophys. J. 1990;361:1-20.
  • Sandage A, Lubin LM. The Tolman surface brightness test for the reality of the expansion. I. Calibration of the necessary local parameters. Astrophys. J. 2001;121(5):2271.
  • Hubble E, Tolman RC. Two methods of investigating the nature of the nebular redshift. Astrophys. J. 1935;82:302.
  • LaViolette PA. Is the universe really expanding?. Astrophys. J. 1986;301:544-53.
  • Hartnett JG. Is the Universe really expanding?. arXiv preprint arXiv:1107.2485. 2011.
  • Lerner EJ. Observations contradict galaxy size and surface brightness predictions that are based on the expanding universe hypothesis. Mon. Not. R. Astron. Soc. 2018;477(3):3185-96.
  • Crawford DF. Observational evidence favors a static universe. arXiv preprint arXiv:1009.0953. 2010.
  • Crawford DF. Is the universe static?. arXiv preprint arXiv:1804.10274. 2018.
  • Orlov VV, Raikov AA. Cosmological tests and the evolution of extragalactic objects. Astron. Rep. 2016;60(5):477-85.
  • La Violetta, Personal communication
  • Brownstein JR, Moffat JW. Galaxy rotation curves without nonbaryonic dark matter. Astrophys. J.. 2006;636(2):721.
  • Moffat JW. Modified gravitational theory as an alternative to dark energy and dark matter. arXiv preprint astroph/0403266. 2004.
  • Moffat JW, Toth VT. Cosmological observations in a modified theory of gravity (MOG). Galaxies. 2013;1(1):65-82.
  • Moffat JW, Toth VT. Observationally Verifiable Predictions of Modified Gravity. InAIP Conference Proceedings 2010;Vol. 1241, No. 1, pp. 1066-1073. Am. Inst. Phys.
  • Milgrom M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983;270:365-70.
  • Milgrom M. Does dark matter really exist?. Scientific American.2002;287(2):42-52.
  • Rozgacheva IK, Agapov AA. Is Dark Matter Needed in Galaxies?. Astronomy Reports. 2018;62(9):551-6.
  • Sivaram C, Arun K, Rebecca L. MOND, MONG, MORG as alternatives to dark matter and dark energy, and consequences for cosmic structures. J. Astrophys. Astron. 2020;41(1):1-6.
  • Marosi LA. The Photon-Baryon Governed Universe. Phys. Res. Int. 2012.
  • Marosi LA. Influence of the Soup-Bubble Structure on the Stability of a Static, Flat Universe Consisting of Matter and a Repulsive with 1/R Decaying Scalar Field. Apeiron: Studies in Infinite Nature. 2008;15(2).
  • Moffat JW, Toth VT. Modified Gravity: Cosmology without dark matter or Einstein's cosmological constant. arXiv preprint arXiv:0710.0364. 2007.
  • Bartlett JG, Blanchard A, Silk J, et al. The Case for a Hubble Constant of 30 km s–1 Mpc–1. Science. 1995;267(5200):980-3.
  • Vigoureux JM, Vigoureux P, Vigoureux B. Cosmological applications of a geometrical interpretation of “c”. Int. J. Theor. Phys. 2008;47(4):928-35.,
  • Maeder A. An alternative to the ΛCDM model: The case of scale invariance. Astrophys. J. 2017;834(2):194.
  • Magain P. An expanding universe without dark matter and dark energy. arXiv preprint arXiv:1212.1110. 2012.
  • Cole, K. C. Los Angeles Times: Data Back Einstein Theory of a Repelling Force, (Diskussion Riess, A., Krauss, L. and Kolb, R.) 1998.
  • Krauss LM. Cosmological antigravity. Scientific American. 1999;280(1):52-9.
  • Kraan-Korteweg RC, Lahav O. The universe behind the Milky Way. Astron. Astrophys. Rev. 2000;10(3):211-61.
  • Peebles PJ, Ratra B. The cosmological constant and dark energy. Rev. mod. phys. 2003;75(2):559.
  • Harrison, E. R. Cosmology: The Science of the Universe (Cambridge University Press). 1981
  • Chluba J, Sunyaev RA. The evolution of CMB spectral distortions in the early Universe. Mon. Not. R. Astron. Soc. 2012;419(2):1294-314.
  • Burigana C, De Zotti G, Danese L. Analytical description of spectral distortions of the cosmic microwave background. Astron. Astrophys. 1995;303:323.
  • Landy, S. D. Mapping the universe, Scientific American. 1999; 280, 38-45

Abstract Views: 96

PDF Views: 0




  • A Possible Role of the Energetically Excited Quantum Vacuum in Cosmology: A Potential Solution to the Horizon and Flatness Problems-The Excitation Energy Dominated Era

Abstract Views: 96  |  PDF Views: 0

Authors

Laszlo A. Marosi
D - 67061 Ludwigshafen, Germany., Germany

Abstract


The cosmological model presented here rests on the postulate that the universe can be described as an interacting attraction (exerted by matter) and repulsion (exerted by the excitation energy of the quantum vacuum) system in viral equilibrium. The basic parameters of the model, the matter density and the excitation energy of the quantum vacuum are determined by observations and are not adjusted to the model. The model requires only a few assumptions that can be deduced from the laws of conventional physics and from the rules of quantum field theory. Existing problems in standard cosmology, such as the flatness and the horizon problems, among others, can be resolved in a straightforward way without inflation and without recourse to dark matter and dark energy.

Keywords


Flatness Problem, Horizon Problem, Cosmic Microwave Background Anisotropy, Isothermization, Thermalization.

References