Open Access Open Access  Restricted Access Subscription Access

From Black-Body Radiation to Gravity: Why Neutrinos are Left-Handed and why the Vacuum is not Empty


Affiliations
1 Wallace, Philips Research Labs, Eindhoven, Netherlands
 

Starting from an overview of neutrino problems and a simplified survey of Fermi’s neutrino theory, it is shown why neutrinos are left-handed and why they seem to show an oscillatory behaviour between their flavours. After addressing the question of how to assess the naked mass of the true elementary particles, it is hypothesized that the elementary constituents of the nuclear background energy and the cosmological background energy are the same. This allows us to derive the magnitude of the quark’s “naked” mass from the polarization of the vacuum.

Keywords

Neutrino, Fermi Constant, Parity Violation, Dark Matter.
User
Notifications
Font Size

  • Roza E. From Black-Body Radiation to Gravity: Why Quarks Are Magnetic Electrons and Why Gluons Are Massive Photons. 2023.
  • Berryman JM, De Gouvea A, Hernandez D. Solar neutrinos and the decaying neutrino hypothesis. Phys. Rev. D. 2015;92(7):073003.
  • Boyarsky A, FrOhlich J, Ruchayskiy O. Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe. Phys. rev. lett. 2012;108(3):031301.
  • Cowan Jr CL, Reines F, Harrison FB, et al. Detection of the free neutrino: a confirmation. Science. 1956;124(3212):103-4.
  • Lee TD, Yang CN. Question of parity conservation in weak interactions. Phys. Rev. 1956;104(1):254
  • Wu CS, Ambler E, Hayward RW, et al. Experimental test of parity conservation in beta decay. Phys. Rev. 1957;105(4):1413.
  • Bahcall JN, Davis Jr R. Solar neutrinos: a scientific puzzle. Science. 1976;191(4224):264-7.
  • Gribov V, Pontecorvo B. Neutrino astronomy and lepton charge. Phys. Lett. B. 1969;28(7):493-6.
  • Roza E. On the Flavour States and the Mass States of Neutrinos. 2023.
  • Maki Z, Nakagawa M, Sakata S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962;28(5):870-80.
  • Roza E. On the second dipole moment of Dirac’s particle. Found. Phys. 2020 ;50(8):828-49.
  • Foldy LL. The electromagnetic properties of Dirac particles. Phys. Rev. 1952;87(5):688.
  • Comay E. Charges, monopoles and duality relations. Il Nuovo Cimento B (1971-1996). 1995; 110:1347-56.
  • Roza E. From Black-Body Radiation to Gravity: Why Neutrinos are Left-Handed and Why the Vacuum is not Empty. 2022.
  • Roza E. A hypothetical H-particle. Phys. Essays. 2011;24(1):72-85.
  • Roza E. The gravitational constant as a quantum mechanical expression. Results phys. 2016; 6:149-55.
  • Tanabashi M, Hagiwara K, Hikasa K, et al. Review of Particle Physics: particle data groups. Phys. Rev. D. 2018;98(3):1-898.
  • Schafer R, Stöckmann HJ, Gorin T, et al. Experimental verification of fidelity decay: from perturbative to Fermi golden rule regime. Phys. rev. lett. 2005;95(18):184102.
  • Griffiths D. Introduction to elementary particles. John Wiley Sons. 2020.
  • Christensen CJ, et al., Free-neutron beta-decay half-life. Phys. Rev. D. 1972;5(7):1628.
  • "Direct neutrino-mass measurement with sub-electronvolt sensitivity." Nat. Phys.18, no. 2 (2022): 160-166.
  • Fukuda S, Fukuda Y, Hayakawa T, et al. The super-kamiokande detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003;501(2-3):418-62.
  • Roza E. On the Mass of the Nucleons from" First Principles".
  • Debye P, Huckel E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes. Physikalische Zeitschrift. 1923;24(9):185-206.
  • Gonano CA, Zich RE, Mussetta M. Definition for polarization P and magnetization M fully consistent with Maxwell's equations. Prog. Electromagn. Res. B. 2015; 64:83-101.
  • Collaboration P, Ade PA, Aghanim N, et al. AJ. Planck 2013 results. XVI. Cosmological parameters. A&A. 2014;571: A16.
  • Roza E. On the vacuum energy of the universe at the galaxy level, the cosmological level and the quantum level.2021.
  • Einstein A. Relativity: The Special and General Theory (1916). Estate Albert Einstein. 1961.
  • Weinberg S. Gravitation and cosmology . John Wiley Sons Inc. New York. 1972.
  • Hashimoto S, Laiho J, Sharpe SR, Particle Data Group. Lattice quantum chromodynamics. Rev. Part. Phys. Ed. by KA Olive et al. (Particle Data Group). 2017; 38:090001.
  • Roza E. On the relationship between the cosmological background field and the Higgs field.2020.
  • Frieman JA, Turner MS, Huterer D. Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 2008; 46:385-432.
  • Peebles PJ, Ratra B. The cosmological constant and dark energy. Rev. mod. phys. 2003;75(2):559.

Abstract Views: 128

PDF Views: 0




  • From Black-Body Radiation to Gravity: Why Neutrinos are Left-Handed and why the Vacuum is not Empty

Abstract Views: 128  |  PDF Views: 0

Authors

Engel Roza
Wallace, Philips Research Labs, Eindhoven, Netherlands

Abstract


Starting from an overview of neutrino problems and a simplified survey of Fermi’s neutrino theory, it is shown why neutrinos are left-handed and why they seem to show an oscillatory behaviour between their flavours. After addressing the question of how to assess the naked mass of the true elementary particles, it is hypothesized that the elementary constituents of the nuclear background energy and the cosmological background energy are the same. This allows us to derive the magnitude of the quark’s “naked” mass from the polarization of the vacuum.

Keywords


Neutrino, Fermi Constant, Parity Violation, Dark Matter.

References