Journal of Pharmaceutical Research Vol. 11, No. 2, April 2012 : 71-75.

SYNTHESIS OF SOME NEWER PYRIMIDINONE DERIVATIVES AS POTENTIAL ANALGESICS AND ANTI-INFLAMMATORY AGENTS

Pathak Devender * and Sharma Neha

Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura - 281001 (U.P.), India, Contact No. 09897661620

Received on : 17.04.2012 Revised : 27.04.12 Ac	ccepted : 30.04.12
--	--------------------

ABSTRACT

A number of substituted chalcones (1a-1o) were synthesized by the reaction of substituted benzaldehyde and substituted acetophenone in presence of ethanolic sodium hydroxide solution. On further treating these substituted chalcones (1a-1o) with urea in alkaline medium, yielded a series of 4,6 disubstituted pyrimidine-2-one derivatives (2a-2o). The structures of the newly synthesized compounds have been established on the basis of IR, ¹H-NMR, MS (ESI) data and elemental analysis. All the compounds were screened for their analgesic activity by Acetic acid induced writhing method and anti-inflammatory activity by Carrageenan induced hind paw oedema assay.

Keywords: Pyrimidine; Chalcones; Analgesic activity; Anti-inflammatory activity.

INTRODUCTION

Cyclooxygenase (COX) is the rate limiting enzyme of the prostanoid biosynthetic pathway, it catalyses the conversion of arachidonic acid to various inflammatory mediators such as prostaglandin, prostacyclin and thromboxane. The enzyme cyclooxygenase exist in two isoforms COX-1 and COX-2. The association of COX-2 with induced inflammation has led to the fact that the selective inhibition of COX-2 over COX-1 might provide good anti-inflammatory agents with reduced side effects than classical NSAIDs but careful prospective examination of coxibs has exhibited unexpected cardiovascular adverse effect^{1,2}. Therefore development of novel compounds having antiinflammatory and analgesic activities with an improved safety profile is very necessary.

The synthesis of pyrimidine derivatives has engrossed substantial attention from organic and medicinal chemists for many years. As several pyrimidine derivatives are known to be associated with multiple biological activities like analgesic^{2,3}, antiinflammatory^{4,5}, antitumor⁶, antiviral⁷ and antimicrobial⁸⁻¹⁰. This stimulated our interest for the synthesis of 4,6disubstituted pyrimidine-2-one (2a-2o). The structures of the synthesized compounds have been established on the basis of IR, ¹H NMR, MS (ESI) data and elemental analysis.

EXPERIMENTAL

All the compounds (2a-2o) were synthesized by using laboratory grade chemicals. The melting points were determined by open capillary method using Thiele's tube and uncorrected. IR spectrum of compounds using KBr pellets were recorded on a Shimadzu FTIR-8400S spectrophotometer, ¹H NMR spectra were recorded on Bruker DRX-300 (300-D MHz, FT NMR) spectrophotometer using TMS as an internal standard, CDCI₃ as a solvent. Mass spectra were obtained using LC-MS (Shimadzu-2010AT) under Electron Spray lonization (ESI) technique and elemental analysis was performed using Elemental Vario EL III, Carlo-Erba 1108. Purity of the compounds was checked by TLC on precoated TLC silica gel 60 aluminium sheets by using *n*-hexane: ethyl acetate (8:2) as solvent system.

General procedure for the synthesis of 3-(Substitutedphenyl)-1-(substitutedphenyl)prop-2en-1-one (1a-1o)

Ethanolic solution of sodium hydroxide (12 ml, 5%) was added to substituted acetophenone (0.43 mol) and then substituted benzaldehyde (0.43 mol) was added, stirred vigorously until mixture was thick, the mixture was kept in the refrigerator overnight, product was filtered, washed with cold water and recrystallized from ethanol to give pure crystals of compounds (1a-1o).

General procedure for the synthesis of 4,6disubstituted pyrimidine-2(1*H*)-one (2a-2o).

3-(substitutedphenyl)-1-(substitutedphenyl)prop-2-en-1-one (0.1 mol) and urea (0.01 mol) were dissolved in ethanolic solution of sodium hydroxide (20ml, 5%) and it was refluxed for 9hr. After refluxing, it was cooled and poured in cold water. The resultant reddish brown solid was filtered, washed with cold water and recrystallized from ethanol to give reddish brown semisolid compounds which were again recrystallized from ethanol to give pure compounds (2a-2o).

*Correspondence : dev_15@rediffmail.com

PYRIMIDINONE DERIVATIVES AS ANALGESICS & ANTI-INFLAMMATORY Scheme: Fragment

Fig. 1. Synthesis of 4, 6-disubstituted pyrimidine-2-one (2a-2o)

The spectral data of final compounds are given below: **4-Phenyl-6-(3'-fluorophenyl)pyrimidin-2(1***H***)-one, 2a:** IR (KBr) □: 3375.41 (N-H stretching), 3022.24 (aromatic C-H stretching), 1662.28 (C=O stretching), 1593.72 (C=C stretching), 1565.33 (C=N stretching), 1276.28 (C-N stretching), 1222.28 (C-F stretching), 754.97 cm⁻¹ (disubstitute benzene deformation). ¹H NMR (CDCl_j): □ 7.09-7.34 (m, 8H, Ar-H), 7.88-7.84 (d, 1H, Ar-H), 7.90 (s, 1H, Ar-H), 8.41 (s, 1H, N-H, D₂O exchangeable). **MS (ESI) (m/z):** [M]⁺ 266.27; Fragments: 189.04, 171.05, 95.02, 77.03. Elemental analysis: Calcd for C₁₆H₁₁FN₂O: C, 72.17; H, 4.16; F, 7.14; N, 10.52.Found C₁₆H₁₁FN₂O: C, 72.12; H, 4.11; F, 7.12; N, 10.49 %.

4-(4'-Fluorophenyl)-6-(2''-chlorophenyl)pyrimidin-2(1H)-one, 2b: IR (KBr) □: 3324.70 (N-H stretching), 3031.89 (aromatic C-H stretching), 1676.03 (C=O stretching), 1589.88 (C=C stretching), 1556.72 (C=N stretching),1323.08 (C-N stretching), 1218.28 (C-F stretching),775.56 (C-CI stretching), 754.12 cm⁻¹ (disubstituted benzene deformation). ¹H NMR (CDCI_3): □6.90-7.35 (m, 6H, Ar-H), 7.70-7.82 (d, 1H, Ar-H), 7.90-8.01 (d, 2H, Ar-H), 8.33 (s, 1H, N-H, D_2O exchangeable). **MS (ESI) (m/z):** [M]* 300.70;

4-(4'-Fluorophenyl)-6-(3''-chlorophenyl)pyrimidin-2(1H)-one, 2c: IR (KBr) □: 3352.50 (N-H stretching), 3010.80 (aromatic C-H stretching), 1672.31 (C=O stretching), 1586.84 (C=C stretching), 1568.01 (C=N stretching), 1320.18 (C-N stretching), 1232.40 (C-F stretching), 788.66 (C-CI stretching), 760.37 cm⁻¹ (disubstituted benzene deformation).¹H NMR (CDCI₃): □7.23-7.40 (m, 4H, Ar-H), 7.67-7.70 (d, 2H, Ar-H), 7.77 (s, 1H, Ar-H), 7.80-7.98 (d, 2H, Ar-H), 8.66 (s, 1H, N-H, D₂O exchangeable). **MS (ESI) (m/z):** [M]⁺ 300.71; **Fragments:** 205.01, 189.04, 96.05, 95.06. **Elemental analysis:** Calcd for C₁₆H₁₀CIFN₂O: C, 63.90; H, 3.35; CI, 11.79; F, 6.32; N, 9.32.Found C₁₆H₁₀CIFN₂O: C, 63.88; H, 3.32; CI, 11.76; F, 6.28; N, 9.30 %.

4-(4'-Fluorophenyl)-6-(3''-methoxyphenyl)pyrimidin-2(1*H***)-one, 2d: IR (KBr) □: 3371.40 (N-H stretching), 3020.40 (aromatic C-H stretching), 1680.32 (C=O stretching), 1598.38 (C=C stretching), 1562.30 (C=N stretching), 1310.18 (C-N stretching), 1275.70 (C-O stretching), 1216.40 (C-F stretching), 768.46 cm⁻¹ (disubstituted benzene deformation). ¹H NMR (CDCl₃): □ 3.84(s, 3H, -OCH₃), 6.90-6.93 (d, 1H, Ar-H), 6.98 (s, 1H, Ar-H), 7.09-7.97 (m, 6H, Ar-H), 8.01-8.03 (d, 1H, Ar-H), 8.52 (s, 1H, N-H, D₂O exchangeable). MS (ESI)** (m/z): [M]⁺ 296.30.Fragments: 201.06, 189.04, 107.05, 95.02. Elemental analysis: Calcd for C₁₇H₁₃FN₂O₂: C, 68.91; H, 4.42; F, 6.41; N, 9.45. Found C₁₇H₁₃FN₂O₂: C, 68.89; H, 4.40; F, 6.38; N, 9.42 %.

4-(4'-Methoxyphenyl)-6-(4''-fluorophenyl)pyrimidin-2(1*H***)-one, 2e: IR (KBr) □: 3364.72 (N-H stretching), 3021.30 (aromatic C-H stretching), 1678.30 (C=O stretching), 1567.40 (C=N stretching), 1591.20 (C=C stretching), 1320.07 (C-N stretching), 1263.50(C-O stretching), 1230.40 (C-F stretching), 786.30 cm⁻¹ (disubstituted benzene deformation).¹H NMR (CDCl₃): □ 3.43(s, 3H, -OCH₃), 6.99-7.03 (d, 2H, Ar-H), 7.16-7.48 (m, 5H, Ar-H), 7.90-7.96 (d, 2H, Ar-H), 8.46 (s, 1H, N-H, D₂O exchangeable).MS (ESI) (m/z)**:[M]⁺ 296.31;**Fragments:** 201.06, 189.04, 107.05, 95.04. **Elemental analysis:**Calcd for C₁₇H₁₃FN₂O₂: C, 68.91; H, 4.42; F, 6.41; N, 9.45.Found C₁₇H₁₃FN₂O₂: C, 68.90; H, 4.40; F, 6.38; N, 9.42 %.

4-(4'-Fluorophenyl)-6-(2''-hydroxyphenyl)pyrimidin-2(1H)-one, 2f: IR (KBr) □: 3522.30 (O-H stretching), 3342.50 (N-H stretching), 3011.80 (aromatic C-H stretching),1675.21 (C=O stretching), 1588.70 (C=C stretching),1572.21 (C=N stretching), 1326.01 (C-N stretching), 1224.47 (C-F stretching), 788.30 cm⁻¹ (disubstituted benzene deformation).¹H NMR (CDCI₃): □ 6.90-6.96 (d, 1H, Ar-H), 6.98-7.38 (m, 6H, Ar-H), 7.80-7.98 (d, 2H, Ar-H), 8.56 (s, 1H, N-H, D₂O

PYRIMIDINONE DERIVATIVES AS ANALGESICS & ANTI-INFLAMMATORY

exchangeable), 9.42 (s, 1H. O-H, D_2O exchangeable). **MS (ESI) (m/z):** [M]⁺ 282.27;**Fragments:**189.04, 187.05, 95.08, 95.02, 93.03. **Elemental analysis:** Calcd for C₁₆H₁₁FN₂O₂: C, 68.08; H, 3.93; F, 6.73; N, 9.92.Found C₁₆H₁₁FN₂O₂: C, 68.02; H, 3.90; F, 6.69; N, 9.88 %.

4-(4'-Chlorophenyl)-6-(2''-chlorophenyl)pyrimidin-2(1H)-one, 2g: IR (KBr)□: 3331.70 (N-H stretching), 3031.25 (aromatic C-H stretching), 1656.20 (C=O stretching), 1598.25 (C=C stretching), 1570.81 (C=N stretching), 1323.08 (C-N stretching), 782.42 (C-Cl stretching), 764.83 cm⁻¹ (disubstituted benzene deformation).¹H NMR (CDCl₃): □ 7.25-7.65 (m, 6H, Ar-H), 7.70-7.82 (d, 1H, Ar-H), 7.98-8.00 (d, 2H, Ar-H), 8.15 (s, 1H, N-H, D₂O exchangeable).MS (ESI) (m/z): [M]⁺ 317.10;Fragments: 205.01, 111.20, 95.02.Elemental analysis:Calcd for C₁₆H₁₀Cl₂N₂O: C, 60.59; H, 3.18; Cl, 22.36; N, 8.83.Found C₁₆H₁₀Cl₂N₂O: C, 60.54; H, 3.12; Cl, 22.32; N, 8.82 %.

4-(4'-Chlorophenyl)-6-(3''-methoxyphenyl)pyrimidin-2(1*H***)-one, 2h: IR (KBr) □: 3353.98 (N-H stretching), 3011.90 (aromatic C-H stretching), 1670.24 (C=O stretching), 1592.80 (C=C stretching), 1564.80 (C=N stretching), 1307.65 (C-N stretching), 1253.64 (C-O stretching), 786.06 (C-CI stretching), 752.19 cm⁻¹ (disubstituted benzene deformation). ¹H NMR (CDCI₃): □, 3.64(s, 3H, -OCH₃), 6.57-6.67 (d, 2H, Ar-H), 6.94-7.57 (m, 5H, Ar-H), 7.90-7.99 (d, 2H, Ar-H), 8.43 (s, 1H, N-H, D₂O exchangeable). MS (ESI) (m/z):** [M]⁺ 357.2; **Fragments:** 248.96, 201.06, 111.06, 107.05, 95.02.**Elemental analysis:** Calcd for C₁₇H₁₃CIN₂O₂: C, 64.54; H, 4.06; CI, 11.91; N, 14.11.Found C₁₇H₁₃CIN₂O₂: C, 64.50; H, 4.01; CI, 11.88; N, 14.10 %.

4-(4'-Methoxyphenyl)-6-(2"-chlorophenyl)pyrimidin-2(1*H***)-one, 2i: IR (KBr) □: 3324.40 (N-H stretching), 3006.82 (aromatic C-H stretching), 1678.22 (C=O stretching), 1588.70 (C=C stretching), 1567.60 (C=N stretching), 1359.72 (C-N stretching), 1240.60 (C-O stretching), 790.92 (C-Cl stretching), 756.04 cm⁻¹ (disubstituted benzene deformation).¹H NMR (CDCl₃): □ 3.49 (s, 3H, -OCH₃), 6.99-7.03 (d, 2H, Ar-H), 7.12-7.56 (m, 6H, Ar-H), 7.70-7.82 (d, 1H, Ar-H), 8.35 (s, 1H, N-H, D₂O exchangeable). MS (ESI) (m/z):** [M]⁺ 312.75; **Fragments:** 205.01, 201.06, 107.05, 111.09, 95.02. **Elemental analysis:** Calcd for C₁₇H₁₃ClN₂O₂: C, 64.54; H, 4.06; Cl, 11.91; N, 14.11.Found C₁₇H₁₃ClN₂O₂: C, 64.52; H, 4.04; Cl, 11.90; N, 14.08 %.

4-(4'-Aminophenyl)-6-(2''-chlorophenyl)pyrimidin-2(1*H*)-one, 2j: IR (KBr) \Box : 3378.60 (N-H stretching), 3312 (N-H stretching of NH₂), 3015.80 (aromatic C-H stretching), 1668.30 (C=O stretching), 1592.88 (C=C stretching), 1560.84 (C=N stretching), 1323.08 (C-N stretching), 792.40 (C-CI stretching), 760.30 cm⁻¹ (disubstituted benzene deformation).¹H NMR (CDCI₃): \Box 4.01(s, 2H, -NH₂), 6.90-6.92 (d, 2H, Ar-H), 7.10-7.56

4-(4'-Bromophenyl)-6-(2"-chlorophenyl)pyrimidin-2(1H)-one, 2k: IR (KBr) : 3327.98 (N-H stretching), 3028.30 (aromatic C-H stretching), 1677.95 (C=O stretching), 1596.88 (C=C stretching), 1581.52 (C=N stretching), 1336.58 (C-N stretching), 784.49 (C-CI stretching), 756.04 (disubstituted benzene deformation), 633.77 (C-Br stretching)cm⁻¹. ¹H NMR (CDCl₂): 06.95-7.63 (m, 6H, Ar-H), 7.70-7.75 (d, 1H, Ar-H), 7.80-7.97 (d, 2H, Ar-H), 8.22 (s, 1H, N-H, D₂O exchangeable).MS [M]⁺ (ESI) (m/z): 361.62; Fragments: 205.01, 154.95, 111.04, 95.02. Elemental analysis: Calcd for C₁₆H₁₀BrCIN₂O: C, 53.14; H, 2.79; Br, 22.10; Cl, 9.80; N, 7.75; Found C₁₆H₁₀BrClN₂O: C, 53.12; H, 2.72; Br, 22.08; Cl, 9.78; N, 7.72 %.

4-(4'-Bromophenyl)-6-(3''-methoxyphenyl) pyrimidin-2(1*H*)-one, 2I: IR (KBr) □: 3382.91 (N-H stretching), 3016.90 (aromatic C-H stretching), 1665.03 (C=O stretching), 1583.45 (C=C stretching), 1572.81 (C=N stretching), 1323.08 (C-N stretching), 1213.14 (C-O stretching), 779.19 cm⁻¹ (disubstituted benzene deformation). 641.49 (C-Br stretching)cm⁻¹. ¹H NMR (CDCI₃): □ 3.51(s, 3H, -OCH₃), 6.88-6.92 (d, 1H, Ar-H), 6.98 (s, 1H, Ar-H), 7.29-7.59 (m, 5H, Ar-H), 7.78-7.97 (d, 2H, Ar-H), 8.29 (s, 1H, N-H, D₂O exchangeable). MS (ESI) (m/z): [M]⁺ 357.2; Fragments: 248.96, 201.06, 107.05, 111.06, 95.02. Elemental analysis: Calcd for C₁₇H₁₃BrN₂O: C, 57.16; H, 3.67; Br, 22.37; N, 7.84. Found C₁₇H₁₃BrN₂O: C, 57.14; H, 4.01; CI, 11.88; N, 14.10 %.

4 - (**3**' - **B** r o m o p h e n y l) - 6 - (**4**' ' - methoxyphenyl)pyrimidin-2(1*H*)-one, 2m: IR (KBr) □: 3321.80 (N-H stretching), 3014.40 (aromatic C-H stretching), 1661.30 (C=O stretching), 1592.40 (C=C stretching), 1568.81 (C=N stretching), 1344.08 (C-N stretching), 1280.20(C-O stretching), 764.37 (disubstituted benzene deformation), 645.40 (C-Br stretching) cm⁻¹. ¹H NMR (CDCI₃): □3.53(s, 3H, -OCH₃), 6.57-6.67 (d, 2H, Ar-H), 7.12 (s, 1H, Ar-H), 7.25-7.50 (m, 5H, Ar-H), 7.62-7.67 (d, 1H, Ar-H), 8.27 (s, 1H, N-H, D₂O exchangeable), **MS (ESI) (m/z)**:[M]⁺ 357.20; **Fragments:** 248.96, 201.06, 111.06, 107.05, 95.02. **Elemental analysis:** Calcd for C₁₇H₁₃BrN₂O₂: C, 57.16; H, 3.67; Br, 22.37; N, 7.84. Found C₁₇H₁₃BrN₂O₂: C, 57.10; H, 3.61; Br, 22.33; N, 7.80 %.

4-(4'-Bromophenyl)-6-(2'',5''dihydroxyphenyl) pyrimidin-2(1*H*)-one, 2n: IR(KBr) □: 3520.30 (O-H stretching), 3321.70 (N-H stretching), 3018.40 (aromatic C-H stretching), 1674.20 (C=O stretching),

PYRIMIDINONE DERIVATIVES AS ANALGESICS & ANTI-INFLAMMATORY

1586.68 (C=C stretching), 1571.75 (C=N stretching), 1315.20 (C-N stretching), 1225.30(C-O stretching), 644.47 (C-Br stretching) cm^{-1.1}**H NMR (CDCI_3):** □6.57 (s, 1H, Ar-H), 6.67-6.70 (d, 2H, Ar-H), 7.20-7.59 (m, 3H, Ar-H), 7.78-7.97 (d, 2H, Ar-H), 8.45 (s, 1H, N-H, D₂O exchangeable), **9.20 (s,** 2H, OH, D₂O exchangeable). **MS (ESI) (m/z):** [M]⁺ 308.30; **Fragments:** 201.06, 190.02, 107.05, 95.02. **Elemental analysis:** Calcd for C₁₆H₁₁BrN₂O₃: C, 53.50; H, 3.09; Br, 22.25; N, 7.80.Found C₁₆H₁₁BrN₂O₃: C, 53.48; H, 3.02; Br, 22.19; N, 7.78 %.

4-(4'-Methoxyphenyl)-6-(4''-methoxyphenyl) pyrimidin-2(1*H*)-one, 2o: IR (KBr) □: 3312.10 (N-H stretching), 3015.90 (aromatic C-H stretching), 1656.22 (C=O stretching), 1588.23 (C=C stretching), 1558.78 (C=N stretching), 1308.50 (C-N stretching), 1224.60 (C-O stretching), 780.37 (disubstituted benzene deformation) cm^{-1.1}H NMR (CDCl₃): □ 3.61(s, 6H, -OCH₃), 6.33-6.57 (d, 4H, Ar-H), 7.25-7.96 (m, 5H, Ar-H), 8.35 (s, 1H, N-H, D₂O exchangeable).**MS (ESI)** (m/z): [M]⁺ 308.30; Fragments: 201.06, 107.05, 95.02. Elemental analysis: Calcd for C₁₈H₁₆N₂O₃: C, 70.12; H, 5.23; N, 9.09.Found C₁₈H₁₆N₂O₃: C, 70.10; H, 5.20; N, 9.07 %.

Physical data of synthesized compounds (2a-2o) i.e., substituents, molecular formula, melting point, R, value percent yield are given in Table 1

Table 1: Physical data of synthesized compounds (2a-2o)

Compound	R	R ₁	Moleoular formula	M. P (°C)	R/^ value	Yleid (१६)
2a	н	ЭF	C to H to F N 2O	76-78	0.78	69.50
25	÷F	201	C ₁₀ H ₁₀ CIFN ₂ O	92-94	0.49	64.20
20	+F	301	C ₁₀ H ₁₀ CIFN ₂ O	95-97	0.44	68.30
24	+F	Э О С Н _а	$\mathbf{C}_{17}\mathbf{H}_{12}\mathbf{F}\mathbf{H}_{2}\mathbf{O}_{2}$	80-82	0.55	70.50
20	4-OCH₂	+F	$\mathbf{C}_{12}\mathbf{H}_{13}\mathbf{F}\mathbf{H}_{2}\mathbf{O}_{2}$	87-89	0.42	68.20
21	÷F	20 H	C ₁₀ H ₁₁ FN ₂ O ₂	90-91	0.44	65.90
29	≁a	201	C ₁₀ H ₁₀ Cl ₂ H ₂ O	74-76	0.45	62.60
211	≁a	∔OCH ₂	C 13H 13CIN 2O 2	88-90	0.64	65.50
2	4-00 H 3	201	C 13H 13CIN 2O 2	84-85	0.54	66.50
3	4-11 H ₂	201	C ₁₀ H ₁₂ CIN ₃ O	96-98	0.58	64.50
24	4-Br	201	C ₁₀ H ₁₀ BrC IN ₂ O	98-100	0.78	70.50
з	+-Br	30 C Ha	CHTHH:BrN:O	97-99	0.51	62.50
Зn	3-Br	∔OCH ₂	C 13H 12Br N 2O 2	93-95	0.41	72.50
- 2n	+-Br	2,54101	C toH tt BrN 20 a	100-101	0.72	72.40
20	4-00 H 2	+ 0 C H ₂	$\mathbf{C}_{10}\mathbf{H}_{10}\mathbf{H}_{2}\mathbf{O}_{0}$	108-110	0.47	64.50

*n-hexane: ethyl acetate (8:2)

Biological activity

Albino rats (Wistar strain) of either sex weighing 100-200g were used for anti-inflammatory and analgesic activity. International principles and local regulations concerning the care and use of laboratory animals were observed. The animal had free access to standard commercial diet and water *ad libitum* and were kept in rooms maintained at 23 ± 2 °C with a 12 h light dark cycle. The protocol was approved by the Animal Ethics Committee of Rajiv Academy for Pharmacy, Mathura, U.P.(IEAC/RAP/2983/2010).

MMATORY Pathak Devender & Sharma Neha Anti-inflammatory activity

The synthesized compounds were evaluated for their anti-inflammatory activity using the Carrageenan induced hind paw oedema assay model of inflammation by using the method of Winter et al¹¹. The animals were randomly allocated to groups of six animals each and were fasted for 12 h before the experiment. Control group received only 1% (w/v) PEG-6000 solution. Standard drug Indomethacin was administered orally at 10 and 20 mg kg⁻¹ dose. Carrageenan solution in distilled water(1%, 0,1 ml) was injected subcutaneously into the sub-plantar region of the left hind paw of each rat, one hour after the administration of the test compounds (10, 20 and 40 mg kg⁻¹) or standard drug (10 and 20 mg kg⁻¹). The left hind paw volume was measured before and after 3 h of carrageenan treatment by means of a plethysmometer. Paw oedema volume was compared with vehicle control group and percent inhibition was calculated as 1- (oedema volume in the drug treated group/oedema volume in the control group)× 100. Results are reported in Table-2.

Table 2: Anti-inflammatory activity of synthesized compounds(2a-2o) after 180 min of carrageenan administration

			- J	
Com pound	Dose	N umbe r	In hibiton of oede ma	ED50 [mg/kg]
No.	[mg/ig]	of rets	(%) ±sem	
	10	6	42.40 ± 1.20*	
28	20	6	58.61±1.32*	14.45
	40	6	80.50±1.36*	
	10	6	44.40 ± 1.16 *	
2b	20	6	56.40 ± 1.20*	12.80
	40	6	82.40 ± 1.28*	
	10	6	40.60 ± 1.14**	
2c	20	6	5120±127**	17.37
	40	6	7822±132**	
	10	6	40.60 ± 1.12**	
21	20	6	52.40 ± 1.06**	19.30
	40	6	74.40 ± 1.36**	
	10	6	38.20 ±1.08**	
2g	20	6	50.20 ± 1.14**	22.90
-	40	6	62.40±1.22**	
	10	6	18.4 ± 0.88	
2 h	20	6	24.50±1.01	Not determine ble
	40	6	42.60±1.16	
	10	6	2020±089	
2 i	20	6	3 1.50 ± 1.06	Not determine ble
	40	6	4520±120	
	10	6	48.40±1.09*	
2 j	20	6	56 20 ± 1.12*	12 20
	40	6	84.40 ±1.30*	
	10	6	8920±1.14**	
2 k	20	6	51211129**	16.05
	40	6	80.40±133**	
	10	6	40.60±1.19**	
2 n	20	6	52.40 ± 1.24**	2130
	40	6	63.50±130**	
indomethecin	10		44.50±0.89**	
	20	6	8 5.60 ± 0.96 **	11.50

All the values are in Mean \pm SEM (n=6). Statistical analysis of data was carried out by one way ANOVA, p*<0.05, **p< 0.01 as compared to control. (** = significantly different from control).

Analgesic activity

Analgesic activity was evaluated by Acetic acid induced writhing method¹². Twenty four hours prior to actual testing a large number of albino rats (100-200g) received intraperitoneally 10 ml kg⁻¹ 1% glacial acetic acid. Animals were observed for writhing movements. Only those showing one or other type of writhing

PYRIMIDINONE DERIVATIVES AS ANALGESICS & ANTI-INFLAMMATORY

movements (positive responders) were chosen for the test on the next day. On the test day the responders received compounds half an hour prior to glacial acetic acid challenge. The test compounds were administered intraperitoneally at the dose of 10, 20 and 40 mg kg⁻¹ as a suspension in 1% PEG-6000. Diclofenec sodium was used as a standard drug at the dose of 10 and 20 mg kg⁻¹. Then the animals were observed for the total number of writhings for 10 min following glacial acetic acid injection. The percent inhibition of writhing movements were calculated as (average writhes in control group - average writhes in treated group/ average writhes in control group)× 100. The results are reported in Table-3.

 Table 3: Analgesic activity of synthesized compounds (2a-2o)

Compound no.	Do ce (mg/kg)	No. ofrats	% inhibition ± S⊟M	ED, (mg/kg)
26	10 22 Q	6	2430±1.22 3420±0.94 95.44±1.10	31.60
20	289 289	6	2522±1.16 40.80±0.92 5820±1.10	27.50
24	2 A C	6	4062±1.12" 56.40±1.16" 7.421±1.28"	1258
20	10 20 40	6	39.22± 1.05" 51.41± 1.21" 72.41± 1.31"	16.20
21	10 20 40	6	42.40 ± 129' 5521 ± 1.16' 7982 ± 120'	14.45
20	10 20 40	6	16.44±0.76 2482±0.92 32.40±1.10	Noi delerminable
2h	10 20 40	6	44.91± 1.21" 52.43± 1.12" 82.22± 1.18"	13.18
а	10 20 40	6	45.42± 1.08** 55.41± 1.19** 83.28± 1.36**	1208
2k	10 20 40	6	47.92± 1.11" 57.81± 1.20" 80.43± 1.28"	15.13
2	10 20 40	6	37.20±0.82** 54.51±1.15** 77.24±1.22**	15.80
20	10 20 40	6	39.42 ± 10.4° 52.46 ± 10.8° 81.38 ± 1.19°	14.45
Diolo feneo codium	10 20	6	4560±075 8460±086	10.40

All the values are in Mean \pm SEM (n=6). Statistical analysis of data was carried out by one way ANOVA, p*<0.05, **p< 0.01 as compared to control.

(** = significantly different from control)

Statistical analysis

Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Dunnett's t-test for multiple comparisons of all compounds in various assays. Data are expressed as mean \pm SEM. The significance of difference was accepted at p<0.05 and p<0.01.

RESULT AND DISCUSSION

A series of 4,6-disubstituted pyrimidine-2-one derivatives (2a-2o) were synthesized and characterized by analytical and spectral data. The structure elucidation was done by interpreting FTIR spectra, ¹H-NMR, mass spectroscopy and elemental analysis. The IR and NMR spectra of these compounds showed the presence of peaks due to N-H and carbonyl(C=O) group. The molecular ion recorded in the mass spectrum is in the agreement with the molecular weight

MMATORY Pathak Devender & Sharma Neha of the compounds. Table-1 gives the physiochemical data of all the synthesized compounds (2a-2o).

The biological screening results revealed that the compounds 2a, 2b, 2c, 2f, 2g, 2j, 2k and 2n displayed significant anti-inflammatory activity. Among all these compounds, 2j was found to be the most potent compound having *o*-chloro group at one phenyl ring and *p*- amino group at other phenyl ring with ED₅₀ 12.20 mg/kg. The other compounds having electron withdrawing groups on phenyl ring showed good anti-inflammatory activity (Table-2).

The compounds 2d, 2e, 2f, 2h, 2i, 2l, 2m and 2o displayed significant analgesic activity. The results shown in Table-3 revealed that the presence of methoxy group (electron releasing) at C-3 and C-4 positions of phenyl ring with electron withdrawing groups like chloro, fluoro and bromo on other phenyl ring showed good analgesic activity. Among all the tested compounds 2i with ED_{50} 12.08 mg kg⁻¹ displayed maximum analgesic activity as compared to diclofenec sodium standard drug (Table-2).

ACKNOWLEDGEMENTS

The authors are grateful to Sophisticated Analytical Instrumentation facility, Punjab University, Chandigarh and Central Drug Research Institute, Lucknow for providing the spectral and analytical data. The authors are also grateful to the management of Rajiv Academy for Pharmacy, Mathura for providing the necessary facilities.

REFERENCES

- Basic and Clinical Pharmacology, Katzung B. G. 10th eds. Macgraw Hill Education Private Limited, New Delhi, 2010, p. 396.
- 2. Khode S, et al. Eur J Med Chem. 2009; 44: 1682.
- 3. V Alagarsamy, et al. Arch Pharm Chem Life Sci. 2007; 340: 352.
- 4. Sondhi SM, et al. Indian J Chem. 2008; 47B: 136.
- 5. Sondhi SM, et al. Indian J Chem. 2009; 49B: 273.
- 6. Singh P, et al. Indian J Chem. 2008; 43B: 291.
- 7. Chen FE, et al. Eur J Med Chem. 2007; 42: 198.
- 8. Kalluraya B, et al. Indian J Het Chem.2007; 17: 67.
- 9. Pusha TY, et al. Indian J Het Chem. 2005; 15: 149.
- 10. Verma P, et al. Indian J Het Chem. 2007; 16: 387.
- 11. Winter CA, et al. Proc Soc Exp Biol. 3, New York, 1962: 412.
- Drug Discovery and Evaluation, Pharmacological Assays, Vogel Gerahard H., 2nd eds, Springer Varlag Berlin Heidelberg, New York, 2002, p.741.