Journal of Pharmaceutical Research Vol. 12, No. 1, January-March 2013 : 23-29.

SIMULTANEOUS ESTIMATION AND STATISTICAL EVALUATION OF DEVELOPED VALIDATED METHODS FOR COMBINED DRUGS IN MARKETED FORMULATION

Upadhyay Yogesh, Gill Navdeep Kaur, Swarnkar Vivek, Sharma Nitin, Sarma G S \dagger and Rawal Ravindra K *
Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab 142 001, INDIA.

Received on : 26.02.2013
Revised: 18.03.2013
Accepted: 22.03.2013

Abstract

We have developed rapid derivative methods for simultaneous estimation of paracetamol (PCM), chlorpheniramine maleate (CPM), and phenylephrine hydrochloride (PH) in pure and liquid dosage form. All methods are simple, accurate, rapid, precise, economical and reliable. Methods are third derivative zero crossing spectrophotometry (I), single divisor ratio spectra derivative spectrophotometry (II), double divisor ratio spectra derivative method (III) and Vierdot's method (IV). All the method utilizes methanol: 0.1 N hydrochloric acid (1:9). For method I, II, III and IV Limit of Detection (L.O.D.) values were within 0.59$1.37 \mu \mathrm{~g} / \mathrm{mL}, 0.60-3.72 \mu \mathrm{~g} / \mathrm{mL}$ and $0.71-3.22 \mu \mathrm{~g} / \mathrm{mL}$ respectively; and Limit of Quantification (L.O.Q.) values were within $1.83-4.40 \mu \mathrm{~g} / \mathrm{mL}$, 2.11-11.91 $\mu \mathrm{g} / \mathrm{mL}$ and $2.32-10.70 \mu \mathrm{~g} / \mathrm{mL}$ for PCM, CPM and PH respectively. The linearity ranges for PCM, CPM and PH were found to be $1.5-15 \mu \mathrm{~g} / \mathrm{mL}, 5-40 \mu \mathrm{~g} / \mathrm{mL}$ and $9-64 \mu \mathrm{~g} / \mathrm{mL}$ respectively, showing regression coefficient values $0.999<R^{2}<1$. Precision values were found less than 2\% Relative Standard Deviation (R.S.D.) for all methods. The results obtained have been compared statistically via analysis of variance (ANOVA).

Keywords: Chlorpheniramine maleate; Paracetamol; Phenylephrine hydrochloride; UV spectrophotometry.

INTRODUCTION

Derivative spectrophotometry is advanced technique used for single and mainly multicomponent analysis by converting the normal spectrum to its first, second and higher derivative spectrum ${ }^{1}$. In derivative spectrophotometry, we have to found the zero crossing points for one drug while other drugs should show substantial absorbance. The derivative spectrophoto metric technique has many advantages like it enhances resolution and allows identification of analyte with close ëmax, it eliminate baseline shift effect (arises from the instrument) and scattering effects which generally occurs in turbid solutions ${ }^{2}$.

Simultaneous estimation involves the estimation of multiple combination drugs at same time period. It is now being used more frequently for the estimation of drugs in multicomponent pharmaceutical formulations due to their inherent advantages like it avoids time consuming extraction and separation, minimize the use of expensive regents and method further being accurate and precise. This work involves the simultaneous estimation of following drugs in pure and marketed formulation.
Paracetamol (PCM), chemically it is N -(4-Hydroxyphenyl) acetamide ${ }^{3}$ (PCM; Fig. 1). It is an analgesic, antipyretic and most commonly used over-the-counter remedy for minor aches and pains and relief of headaches and used along with various cold
preparations. It may act by inhibiting cyclo-oxygenase (COX-3, a linked variant of COX-1). ${ }^{4}$

Chlorpheniramine maleate (CPM), it is chemically (3RS)-3-(4-Chlorophenyl)- N, N-dimethyl-3-(pyridin-2-yl)propan-1-amine hydrogen (Z)-butenedioate ${ }^{5}$ (CPM; Fig. 1), is an antihistamine (first-generation alkylamine) used in the prevention of the symptoms of allergic conditions such as rhinitis and urticaria, also indicated in food or insect sting allergy. It has low sedative effect than other antihistamines. ${ }^{6}$

Phenylephrine hydrochloride (PH), chemically it is (1R)-1-(3-Hydroxyphenyl)-2-(methylamino) ethanol hydrochloride ${ }^{7}$ (PH; Fig. 1). PH is a selective á ${ }_{1}{ }^{-}$ adrenergic receptor agonist used primarily in nasal decongestion, as an agent to dilate the pupil, and to increase blood pressure. ${ }^{8}$

Piancetiant

Chimplenimunemicace

Phaylyhane
hytuatheale

Fig. 1 : Chemical structure of Paracetamol, Chlorpheniramine maleate and Phenylephrine hydrochloride.
All three drugs are official in Indian Pharmacopoeia (IP) and British Pharmacopoeia (BP). The physical properties of PCM, CPM and PH were estimated and
*Correspondence : ganti_ss@rediffmail.com, rawal.ravindra@gmail.com

DERIVATIVE SPECTROPHOTOMETRY

used for active pharmaceutical ingredient (Table 1). The PCM, ${ }^{9} \mathrm{CPM}^{10}$ and PH^{11} alone or in combination with other drugs is reported to be estimated by spectrophotometric method, ${ }^{12-16}$ derivative spectrophotometric method, ${ }^{17}$ chemometric-assisted spectrophotometric, ${ }^{18}$ HPLC, ${ }^{19-20}$ TLC, ${ }^{21}$ LC-MS, ${ }^{22}$ FT-IR, ${ }^{23}$ amperometric determination, ${ }^{24}$ fluorimetry, ${ }^{25}$ micellar electrokinetic chromatographic method, ${ }^{26}$ electrophoresis, ${ }^{27}$ liquid chromatography with two UV absorbance detector ${ }^{28}$ and chemometric determination. ${ }^{29}$
Table 1: Physical properties of the standard drugs.

unced	Sher	人m)	(19ic)	axpe	masep	Corawan adiferene?	Reamm *ade	$\left(1, \Phi^{\prime \prime}\right)$	$\begin{aligned} & \hline \text { LOUN } \\ & (0,0+L) \end{aligned}$
	PO4	15111	1s-6	sek	*кele	****	v1s60 14	1.37	40
1	Ond	1446	s*	*sa	\%eate	exse	-1.165 16	1000	211
	ค*	1v1*	+4	- 6	exees	exse	*14.688	322	10.70
"	$\square^{(2)}$	155.6	15-6	*)w	vasee	*wse	10066+1.76	0×0	2.57
	Ond	15451	s.*	*exs	enste	esse	6S54* 10	2010	577
	A*	161\%	+4	6x*	esise	ewese	*6.14* 10	1.00	517
II'	${ }_{P a 4}$	12111	15-6	***	6ease	exse	6.16tera	อาง	252
	Ow	15ın	5**	***	ense	exse	vistote	0.71	24
	A.	114*	+4	siow	6edee	ewat	6+3las	1.65	393
${ }^{17}$	Pas	1440	15-6	sen	entie	***	6tsta ex	10.59	183
	Ond	16tw	s*	sev	***e	***s	v12\%esi	2.72	11.91
	A.	1140	4.4	**x	enale	v.xss	*5xecest	0.71	2×2

As per literature survey, no analytical method has been developed by using derivative spectrophotometric method for this tertiary combination which is more reliable, simple, accurate and precise method for analysis of multicomponent mixture.
In contrast to other spectrophotometric techniques, the derivative spectrophotometric methods (third derivative zero crossing spectrophotometry, single divisor ratio spectra derivative method, double divisor ratio spectra derivative method) are more rapid, simpler and economical methods and is widely used in the multicomponent analysis of mixtures by UV spectrophotometry. We can resolve tertiary mixture easily with these methods. This method can be applied in pharmaceutical analysis for the determination of individual drugs in multicomponent mixture.
The present study mainly aims at developing a sensitive, simple, rapid, economical, precise and accurate derivative spectrophotometric method for the determination of PCM, CPM and PH in oral suspension and their statistical evaluation by using two- way ANOVA. In present research work 1st, 2nd and 3rd orders of normal spectra were analyzed on trial basis by using different number of data points for slope calculation. All the four methods were developed and satisfactory results were obtained.

EXPERIMENTAL

Selection of analyte wavelength: The wavelength was selected after analyzing the samples in different solvents individually and in combinations like methanol/

Yogesh Upadhyay et al. HCl , and methanol $/ \mathrm{NaOH}$ at different concentration (in moles). The best results were found in methanol: 0.1 N HCl in $1: 9$ and also satisfactory linearity were obtained at $244 \mathrm{~nm}, 264 \mathrm{~nm}$ and 274 nm for PCM, CPM and PH respectively.

Instruments

UV-Vis double beam spectrophotometer Perkin-Elmer Lambda-35 was used for all spectrophotometric measurements, having slit width of 1 nm , installed with UV Winlab and UV Winlab data processor and viewer software. Ultra bath sonicator (PCl analytics 3.5 L capacity) was used for proper mixing of stock solutions and sonication.

Reagents and materials

All chemicals used were analytical grade (Central Drug House Chemicals, New Delhi, India). Pure PCM, CPM, and PH were obtained from Syncom Health Care Limited, Dehradun, India. Marketed formulation named as COLD-GO which is an oral suspension, Torque Pharmaceutical PVT. Ltd, batch No. HG-278 was procured from local market.

Solutions

Pure samples stock solution $1 \mathrm{mg} / \mathrm{mL}$ of PCM, CPM and PH were freshly prepared individually in methanol and further dilutions were made by using 0.1 N HCl (for spectrophotometric measurement blank was kept constant in the ratio of 1:9 methanol:0.1N HCI). Marketed formulation which was labeled as each 5 ml of oral suspension contain 125 mg PCM, 2 mg CPM and 5 mg PH (having coloring agent ponceau4R) was used for the study.

Procedure

All the reagent and analytes were stable up to 24 hour from their preparation at room temperature. All the three drugs were found to be stable during each experimental condition and in the solvent mixture i.e. methanol: 0.1 N $\mathrm{HCl}(1: 9)$ and each spectrophotometric measurement were taken at room temperature.

Extraction procedure

For preparation of marketed dilutions, the equivalent weight were calculated and according to weight, required suspension firstly extracted in methanol and $0.1 \mathrm{~N} \mathrm{HCl}(1: 1)$ by using sonication process for 1 hour at room temperature. After this process the resultant solution was filtered through Whatman filter paper number 41. Then further dilutions were made in methanol: $0.1 \mathrm{~N} \mathrm{HCl}(1: 9)$ and absorbance were measured and analyzed.

Standard laboratory mixture

Standard laboratory mixture was prepared to obtain precise result by making the concentration same as

DERIVATIVE SPECTROPHOTOMETRY

marketed formulation i.e. $25 \mu \mathrm{~g} / \mathrm{mL}, 0.4 \mu \mathrm{~g} / \mathrm{mL}$ and 1 $\mu \mathrm{g} / \mathrm{mL}$ for PCM, CPM and PH respectively.

Third derivative zero order crossing spectrophotometry (Method I)

All the spectra of the sample were scanned between $320-210 \mathrm{~nm}$ using a 1.0 cm quartz cell. The zero order spectra of the three pure drugs in their concentration range (PCM, CPM and PH; 1.5-15 $\mu \mathrm{g} / \mathrm{mL}, 5-40 \mu \mathrm{~g} / \mathrm{mL}$ and $9-64 \mu \mathrm{~g} / \mathrm{mL}$ respectively) were saved separately. These spectra were derivatized in $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ order derivative and satisfactory results were found by using third derivative spectra in which number of data points used for slope calculation was set as 49 . The third derivative spectra were recorded at $252.77 \mathrm{~nm}, 244.95$ nm and 297.7 nm for PCM, CPM and PH respectively. Standard laboratory mixture and commercial formulation were scanned, derivatized and analyzed at the same wave length as mentioned above.

Single divisor ratio spectra derivative spectrophotometry (Method II)

Pure drug and marketed formulation were scanned between 320 and 210 nm . Pure PH and tertiary mixture spectra were divided by pure spectra of PCM. Pure CPM and their tertiary mixture spectra were divided by pure spectra of PCM. Pure PCM and tertiary mixture spectra were divided by pure spectra of PH (highest concentrations of all three drugs were used as a divisor), all the spectra were stored and derivatized to $3^{\text {rd }}$ order by using 49 data points. PCM was analyzed at 218.97 nm by zero crossing point for CPM and PH as divisor. CPM was analyzed at 254.83 nm through zero crossing point for PH and PCM as divisor, whereas PH was analyzed at 261.06 nm by zero crossing point for CPM and PCM as divisor. Calibration graphs for PCM, CPM and PH were obtained having satisfactory correlation coefficient (R^{2}) values. Then the standard laboratory mixture and marketed formulation were also determined by above described procedure.

Double divisor ratio spectra derivative spectrophotometry (Method III)

Pure drug and marketed formulation were scanned between 320 and 210 nm . Then the tertiary mixture and pure PCM spectra were divided by a standard spectrum which was obtained by the sum of spectra of CPM and PH. The tertiary mixture and pure CPM spectra were divided by a standard spectrum which was obtained by the sum of spectra of PCM and PH. Similarly for PH, the tertiary mixture and pure PH spectra were divided by a standard spectrum which was obtained by the addition of spectra of PCM and CPM. All the spectra were derivatized into third order by using data points 13. After that the calibration graph were obtained for all the three drugs having satisfactory R^{2} values at $232.71 \mathrm{~nm}, 253.37 \mathrm{~nm}$ and 227.86 nm for PCM, CPM and PH respectively and further standard

Yogesh Upadhyay et al. laboratory mixture and marketed formulation were also analyzed according to above procedure.

Vierdot's method ${ }^{1}$ (Method IV)

This method is also known as simultaneous equation method. ${ }^{1}$ This method utilized simultaneous equations which were obtained from the overlay spectra of three drugs. This method is based on the absorption and absorptivity of PCM, CPM and PH calculated at wavelength maximum of each drug. These parameters were calculated at $\ddot{e}_{\text {max }} 244 \mathrm{~nm}, 264 \mathrm{~nm}$ and 274 nm for PCM, CPM and PH respectively. The absorptivity values were measured at $\ddot{e}_{\text {max }}$ of each other.
Further standard laboratory mixture and marketed formulation were analyzed accordingly as described above. The marketed formulation was analyzed by extracting the suspension and solution was diluted as required and scanned over 320-210 nm region. Finally the equations were solved by using matrix calculations.

Validation

The proposed methods were validated as per International Conference of Harmonization (ICH) guidelines with respects to linearity, range, accuracy, precision, LOD (Limit of detection), LOQ (Limit of quantitation), specificity and robustness ${ }^{30}$

RESULT AND DISCUSSION

Overlay of the absorption spectra of PCM, CPM and PH is shown in the Fig. 2. Concentration ranges for PCM, CPM and PH were found to be $1.5-15 \mu \mathrm{~g} / \mathrm{mL}, 5-$ $40 \mu \mathrm{~g} / \mathrm{mL}$ and $9-64 \mu \mathrm{~g} / \mathrm{mL}$ respectively. All the proposed methods were applied and satisfactory results were obtained which are shown further.

Fig. 2 : Overlay spectra of PCM, CPM and PH at 244 nm, 264 nm and 274 nm respectively .

Third order derivative zero crossing spectrophotometry (Method I)

The third order derivative spectra show more resolution in contrast to zero, first and second order spectra [the linearity of the method is shown in Fig. 3(a)] in terms of zero crossing points as shown in Fig. 3b, c \&d. The CPM and PH were having zero crossing point at 252.77 $\mathrm{nm}, \mathrm{PCM}$ and PH at 244.95 nm and PCM and CPM at 297.7 nm that's why the wavelengths were selected for determination of individual as 252.77 nm for PCM (Fig. 3b), 244.95 nm for CPM (Fig. 3c) and 297.7 nm

DERIVATIVE SPECTROPHOTOMETRY

for PH（Fig．3d）．Method was validated and results of various parameters are shown in Table 2a，2b and 2c． Further the results of marketed formulation analysis are shown in Table 3a．Results of recovery studies are also shown in Table 3b．

Fig． 3 ：（a）Calibration curve of PCM，CPM and PH．Third order derivative zero crossing spectra；（b）PCM at 252.77 nm，（c）CPM at 244.95 nm （d） PH at 297.7 nm ．

Single divisor ratio spectra derivative spectro－ photometry（Method II）
For this method several measurements were made on trial basis to select the accurate standard divisors and different wavelengths．We found changes while changing the divisor concentrations，so accurate pure drug divisor was required to obtain the satisfactory result．For determining working wavelength for PCM， CPM and PH，highest concentration of divisors were selected on trial basis．The linearity of the method is shown in Fig． 4 （a）．The derivative wavelengths were selected as 218.97 nm for PCM， 254.83 nm for CPM and 261.06 for PH as shown in Fig． 4 （b），（c）and（d），

Fig． 4 ：（a）Calibration curve for $P C M, C P M$ and $P H$ ．Derivative ratio spectra；（b）PCM at 218.97 nm （c）CPM at 254.83 nm （d） PH at 261.06 nm ．

Yogesh Upadhyay et al．
respectively．Standard laboratory mixture analysis was done according to above described procedure．Method was validated and results of various validation parameters were shown in Table 2a，2b and 2c．The results of marketed oral suspension analysis are shown in Table 3a．Results of recovery studies are shown in Table 3b．
Table 2a ：Validation parameters obtained by all methods．

utred	mor	Anem	$\begin{aligned} & \text { Rarpe } \\ & (\text { toptis) } \end{aligned}$	stpo	mweat	$\begin{aligned} & \text { Cantiven } \\ & \text { combiercien } \end{aligned}$	$\begin{gathered} \operatorname{socinc}, \\ x a y \end{gathered}$	$\frac{L \infty}{(0,1)}$	(100)
1	POi	51．11	15 s	50\％	Esele	6＊se	NLW＊ 1.54	137	4.40
	cat	34＊5	s＊	cse	6eate	ensse	N16．1s	0en	211
	$\mathrm{Pr}^{\text {r }}$	waile	＊＊	＊ets	（＊ee）	usse	N6E＊＊）	322	1070
＂	Poi	315．81	156	＊um	evee	＊＊st	10\％6＊10	0\％	2.57
	cat	2451	3＊	axe	ense	asse	＊＊＊＊ 1.11	2012	577
	Pr	± 156	＊＊	－0x	tere	＊＊530	664．1se	180	517
III	Pat	212.11	156	ens	6ase	＊＊＊＊	＊＊＊＊＊＊	ถาง	252
	cad	53．31	3＊	＊＊＊	case	evse	N151＋164	1071	234
	$\mathrm{Pr}^{\text {H }}$	2195	＊＊	esen	＊ete	6＊＊＊	＊＊31＊els	IEs	3.97
${ }^{17}$	Pat	34.50	156	＊00	（an）	＊＊＊＊	＊＊＊＊＊．16	10.9	185
	cam	2ase	3＊	ens	esee	eง＊ง	v（aues）	372	1191
	P／1	$14 s 5$	＋4	－0x	ceste	eses	＊＊wes）	071	2×2

（imion finm
Table 2b：Robustness study results for all methods．

ania	rem	mewrghatum（mom		wamenowneautmo	
		人－10．51	＋402m	Weranet	Themer
			（arabias．a）	（t9yerabiasa）	（38．a．a 9 ）
	109	पाड大a＜3	（1）	0xtaxaz	（0）
	Cas	0．3020．0．4	atas＊02	astasace	
	${ }^{\text {m }}$	12012.03	1312×60	1scesene	杖：038
	nos	0¢Ez．03			acctaos
	Cst	．0．3	0．6t10．0e	at5wance	а¢Cas．06T
	\％	0370×68	－0゙508	0．3002＊020	Mesitasi
	nos	axezan	160． 206	14045 a 0 ar	atertana
	asi	axetay		0stcese3	0234＊＊027
	ft	0 menetan	OTO4－ 0 \％	asertate	arxe＊atz
	Cos	0000．03	E．0z	ar2ses 0	asazato
	C\％	1225＊0\％	asune 00	areat 0.0 d	1070．0．0．2
	\％	10012＊03	1．1300．03	aTtem．0s	atra．ast

Table 2c ：Precision study（Intra－day and Inter－day）results for all four methods．

		twral	Hercail	Imanalit	wommiv
mada	РСы	2．00\％ 0029	a 2 esanats		03 ccian 1
18．as	$\mathrm{CPH}^{\text {¢ }}$	a．20asam	axcceuez	0.25 40．0．	0 ¢0．cosa
a，（mas）	Pr^{H}	abertase	a． 2040034	oscticay	＋cosiatas
morda	$\mathrm{PCH}^{\text {ch }}$	2546．ase	a comener	－2806ati	oreana
Reas．	$\mathrm{CaH}^{\mathrm{H}}$	abtitats	a．cesesation	0.290006	0.546008
0，（0m0）	P\％	а．йceata	a．cescasa	－seatana	＋5065as

Table 3a ：Assay results of PCM，CPM and PH in marketed oral suspension．

inned		Ltam devarared 	
T	［ice 13	प¢क＊	
1	（xT＊2T	942＊＊13	6．12＊ 1
11	9tutace	965＊＊e	9630.0 .02
\％	sezs．0．05	955056	9780．asa

Table 3b ：Recovery studies results of PCM，CPM and PH by all methods．

				Matas 1			M $\mathrm{ha=1}$						U－tat N	
	＋¢，	व14	\％	İv	civ	F\％	＋a，	वv	F	（2）	वv	Th	It．	E．V
＊x	＝	2x	11	＊		ve	1814	－3	＊R	＊＊	exs	138	vat	vat vas
1＝x	\cdots	：3	1	v＊	\cdots	$v \times$	$\pm \pi$	－	$1 \times$	0	＊＊	＊	＊ 4	vav
1x\％	x	23	3	＊＊	－ 41	－s	тas＊	－ 0	s．al	＊s	＊＊	＊54	＊＞	＊＊＊
＂		nas）		ve	נגט	＊s	1819	＊s	＊＊	\％a	\％3	＊เง	＂s4	vil 10
se		nas		10	．v	27	ขロ	23	33	231	A	：A	： 4	： 0

DERIVATIVE SPECTROPHOTOMETRY

Double divisor ratio spectra derivative method

 (Method III)On trial basis, the working derivative wavelengths [the linearity of the method is shown in Fig. 5 (a)] were selected such as 232.71 nm for PCM, 253.37 nm for CPM and 227.86 nm for PH shown in Fig. 5 (b), (c) and (d). The derivative working wavelengths were selected for all drugs having maximum amplitudes and best R^{2} value. Standard laboratory mixture analysis was done according to above described procedure. Method was validated and results of various validation parameters are shown in Table 2a, 2 b and 2c. Analysis of marketed oral suspension was done and results are shown in Table 3a. Results of recovery studies are shown in Table 3b.

Fig. 5 : (a) Calibration curve for PCM, CPM and PH. Double divisor ratio derivative spectra; (b) PCM at 232.71 nm (c) CPM at 253.37 nm (d) $P H$ nm at 227.86 nm .

Vierdot's method (Method IV)

In this method, calibration curve [Fig. 6 (a)] and three equations were obtained from the overlay spectra shown in Fig. 6(b), (c) and (d) of all the three drugs. The absorptivity of PCM, CPM and PH were determined at wavelength maximum of each other after scanning at $320-210 \mathrm{~nm}$. The $\ddot{e}_{\text {max }}$ for all three drugs were found at $244 \mathrm{~nm}, 264 \mathrm{~nm}$ and 274 nm for PCM, CPM and PH respectively. The absorptivities were calculated at the maximum wavelength for all drugs. These absorptivity values were found, for PCM; 0.0637, 0.0262and 0.01201 , for CPM; 0.00753, 0.02417and 0.01586 and for PH; 0.00175, 0.00781and 0.01127 at $244 \mathrm{~nm}, 264$ nm and 274 nm respectively. Further these absorptivity coefficient values were substituted in equation 1, 2 and 3 to obtain the concentration of the drugs. These equations were solved by matrix calculation by using unscramble software. Equations were listed below:
$\mathrm{A}_{1}=0.0637 \mathrm{~b} \mathrm{C}_{\text {РСМ }}+0.0075 \mathrm{~b} \mathrm{C}_{\text {СРМ }}+0.0018 \mathrm{~b} \mathrm{C}_{\text {РН }} \quad$ Eq. (1)
$\mathrm{A}_{2}=0.0262 \mathrm{~b} \mathrm{C}_{\text {PCM }}+0.0242 \mathrm{~b} \mathrm{C}_{\text {CPM }}+0.0078 \mathrm{~b} \mathrm{C}_{\text {PH }} \quad$ Eq. (2)
$\mathrm{A}_{3}=0.0120 \mathrm{~b} \mathrm{C}_{\text {PCM }}+0.0159 \mathrm{~b} \mathrm{C}_{\text {CPM }}+0.0113 \mathrm{~b} \mathrm{C}_{\text {PH }} \quad$ Eq. (3)
Where, $\mathrm{C}_{\text {PCM }}, \mathrm{C}_{\text {CPM }}$, and $\mathrm{C}_{\text {PH }}$ are concentrations of PCM, CPM and PH respectively in $\mu \mathrm{g} / \mathrm{mL}$. A_{1} (1.62), $\mathrm{A}_{2}(0.73)$, and $A_{3}(0.40)$ are the absorbance of the marketed

Yogesh Upadhyay et al.

Fig. 6 : (a) Calibration curve for PCM, CPM and PH. Overlay spectra; (b) PCM at 244 nm (c) CPM at 264 nm (d) PH nm at 274 nm .
sample for PCM, CPM and PH respectively; b denotes the path length (1 cm) These equations were used for simultaneous estimation of PCM, CPM and PH in standard laboratory mixture as well as marketed formulation. Method was validated and results of various validation parameters are shown in Table 2a, 2 b and $\mathrm{2c}$. Analysis of marketed oral suspension was performed and results are shown in Table 3a. Results of recovery studies are shown in Table 3b.

Significant difference of developed four methods statistically

For determination of significant difference between these methods, two-way ANOVA was applied. For this statistics was successfully applied on precision and accuracy data of different methods. Calculated values were less than the theoretical value. Further there is no significant difference between the proposed four methods. Data are shown in Table 4a and results are shown in Table 4b.

Table 4a : Accuracy and precision data for statistical comparison by all methods.

Hated	Onq	Acamics		गraxico			
		Hemes	ab. a)	veraidis		meer-dis	
				Hean	9.3. (*)	Hmon	S.D. (*)
1	$\mathrm{acm}^{\text {cm }}$	5 se	1.34	a wort	0.20	0 St 40	a.3e
	can	9. 16	1.04	a, 200	a.c4	OLty	2.4
	98	$5{ }^{5}$	200	asatr	a.20	0 ¢ 58	asa
"	PCH	100.56	$2 \pi 0$	assea	${ }^{\text {a } 15}$	0sase	0.21
	Cat	¢ 5	1.12	a	a.22	- acse	a,
	$\mathrm{ar}^{\text {H }}$	CO_{4}	+.00	asous	234	Onter	asa
${ }^{1}$	$\mathrm{acm}^{\text {chen }}$	¢ 56	ate	a, enes	a.30	0 02800	a.t1
	Cat	960	1.60	a.27er	ace	029er	a.ce
	$\mathrm{ar}^{\text {H }}$	¢ 2 LT	a, ${ }^{\text {a }}$	avass	a, 4	osede	a.30
"	PCH	¢50	ат	asee	a, 16	0^{054}	0.30
	CaO_{1}	9825	ass	acie	a. 24	0.9446	a 19
	Pr	aso	as	1.6080	a. 10	+ megt	a 19

Table 4b : Statistically evaluated results for accuracy and precision by two-way ANOVA.

Parame kis	F.e.teiot	Fm...an
Accuracy (mean \pm S.D.)	1.38	192
Inta-day (meant SD.)	527	192
Inker-day (meant SD.)	126	192

DERIVATIVE SPECTROPHOTOMETRY

Conclusion

Derivative spectrophotometry analytical technique is frequently used in the contemporary analysis of drugs in multicomponent mixtures in today scenario. The developed spectrophotometric methods which were used for simultaneous estimation of PCM, CPM and PH were selective, specific, simple, accurate, rapid, precise, economical and reliable. All the derivative methods and Vierdot's method was validated accurately and can be used for the simultaneous estimation of PCM, CPM and PH in combined dosage form. By applying ANOVA, it was also concluded that there is no significant difference between all proposed methods, so these methods can be interchangeable for analysis of same drugs. These procedures can be applied for routine quality control analysis of oral suspension as well as solid dosage form.

REFERENCES

1. Beckett AH, Stenlake JB. Practical pharmaceutical chemistry, New Delhi: CBS Publishers and Distributors, 2002, p 275.
2. Chaudhary J, et al. Simultaneous estimation of multicomponent formulations by UV-Visible spectroscopy, Int Res J Pharm. 2011; 2(12): 81.
3. British Pharmacopoeia, B.medicinal and pharmaceutical substances, Paracetamol, Department of Health and Social Services for Northern Ireland. 2009, p 483.
4. Rang HP, Dale MM, Ritter JM, Moore PK. Rang and Dale's Pharmacology. New York: Churchill Livingstone Elsevier. 2007, p 236.
5. British Pharmacopoeia, B.medicinal and pharmaceutical substances, Chlorpheniramine Maleate, Department of Health and Social Services for Northern Ireland.2009, p 147.
6. Rang HP, Dale MM, Ritter JM, Moore PK. Rang and Dale's Pharmacology. New York: Churchill Livingstone Elsevier. 2007, p 364.
7. British Pharmacopoeia, B.medicinal and pharmaceutical substances, Phenylephrine Hydrochloride, Department of Health and Social Services for Northern Ireland. 2009, p 503.
8. Rang HP, Dale MM, Ritter JM, Moore PK. Rang and Dale's Pharmacology. New York: Churchill Livingstone Elsevier.2007, p 186.
9. Indian Pharmacopoeia, The Indian Pharmacopoeia commission Ghaziabad. 2007, p 900.
10. Indian Pharmacopoeia, The Indian Pharmacopoeia commission Ghaziabad. 2007, p 301.
11. Indian Pharmacopoeia, The Indian Pharmacopoeia commission Ghaziabad. 2007, p 936.
12. Dinç E, et al. Simultaneous spectrophotometric determination of mefenamic acid and paracetamol

Yogesh Upadhyay et al.

in a pharmaceutical preparation using ratio spectra derivative spectrophotometry and chemometric methods. J Pharm Biomed Anal. 2002; 28: 1091.
13. Saviæ I, et al. Development and validation of spectrophotometric method for phenylephrine hydrochloride estimation in nasal drops formulations, Macedonian J Chem Chem Eng. 2008; 27: 149.
14. Nogowska M, et al. Simultaneous spectrophotometric determination of acetylsalicylic acid, paracetamol and caffeine in pharmaceutical preparations. Chem Anal.(Warsaw). 1999; 44: 1041.
15. Sawant R, et al. Mathematical and multiwavelength spectrophotometric methods for simultaneous estimation of paracetamol, phenylephrine hydrochloride, chlorpheniramine maleate and caffeine. Int J Pharm Front Res. 2011; 2: 31.
16. Chitlange SS, et al. Spectrophotometric methods for simultaneous estimation of dexibuprofen and paracetamol. Asian J of Res Chem. 2009; 2: 30.
17. Kumar PR, et al. Derivative spectrophotometric estimation of ondansetron and paracetamol. J Chem. 2006; 3: 134.
18. Al-Shaalan NH. Determination of phenylephrine hydrochloride and chlorpheniramine maleate in binary mixture using chemometric-assisted spectrophotometric and high-performance liquid chromatographic-UV methods. J Saudi Chem Soc. 2010; 14: 15.
19. Schieffer GW, et al. Simultaneous stability indicating determination of phenylephrine hydrochloride, phenylpropanolamine hydrochloride, and guaifenesin in dosage forms by reversed phase paired ion high performance liquid chromatography. J Pharm Sci. 1983; 72: 55.
20. Ragonese R, et al. Full and fractionated experimental designs for robustness testing in the high-performance liquid chromatographic analysis of codeine phosphate, pseudoe-phedrine hydrochloride and chlorpheniramine maleate in a pharmaceutical preparation. J Chromatogr A. 2000; 870: 45.
21. Argekar AP, et al. Simultaneous determination of paracetamol and mefenamic acid in tablets by HPTLC. J Planar Chromatogr - Mod TLC. 1999; 12: 361.
22. Godejohann M, et al. Characterization of a paracetamol metabolite using on-line LC-SPE-NMR-MS and a cryogenic NMR probe. J Chromatogr A. 2004; 1058: 191.
23. Ekgasit S, et al. A novel ATR FT-IR microspectroscopy technique for surface contamination analysis without interference of the substrate. Anal Sci. 2007; 23: 863.

DERIVATIVE SPECTROPHOTOMETRY

24. Richard Prabakar SJ, et al. Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach. J Electroanal Chem. 2008; 617: 111.
25. Llorent-Martínez EJ, et al. Fluorimetric SIA optosensing in pharmaceutical analysis: Determination of paracetamol. J Pharm Biomed Anal. 2007; 45: 318.
26. Emre D, et al. Simultaneous determination of paracetamol, caffeine and propyphenazone in ternary mixtures by micellar electrokinetic capillary chromatography. J Chromatogr. B. 2007; 847: 126.
27. Gomez MR, et al. Simultaneous determination of dextromethorphan, diphenhydramine and phenylephrine in expectorant and decongestant syrups by capillary electrophoresis. J Pharm Biomed Anal., 2002; 30: 791.
28. Cieri UR. Determination of phenylephrine hydrochloride, chlorpheniramine maleate and methscopolamine nitrate in tablets or capsules by liquid chromatography with two UV absorbance detectors in series, J. AOAC Int. 2006; 89: 53.
29. Khoshayand MR, et al. Simultaneous spectrophotometric determination of paracetamol, phenylephrine and chlropheniramine in pharmaceuticals using chemometric approaches. J of Fac of Phar. 2010; 18: 292.
30. Huber Ludwig, Validation of Analytical Methods and Processes. New York: Marcel Dekker Inc. 1993, p 507.
