Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Adjustment of the Band Gap Energy According to Sizes of some Cubic Nanosemiconductors of IV, III-V and II-VI Groups


Affiliations
1 The Research Unit of Materials and Renewable Energy, University of Abou Bekr Belkaid, Fg Pasteur B.P 119, Tlemcen, Algeria
2 Algerian Ministry of Foreign Affairs, 08 City Zohor, Remchi-Tlemcen, Algeria
     

   Subscribe/Renew Journal


The present work focuses on the modeling of the quantum confinement for several cubic semiconductors of the IV, IV-IV, III-IV, II-VI groups. In this way, we improve the actual methods of the band gap energy adjustment as function of the nanosemiconductors sizes. First, we used the Effective Mass Approximation (EMA) to investigate several confinement regimes such as weak, medium and strong. Then to ensure a good adjustment of this band gap energy, we recalculated the holes and the electrons effective masses of the cubic semiconductors via the K-P theory, the Luttinger parameters, and various interpolations. The results are compared with two other methods: a theoretical model of the Hyperbolic Band (HBM) and experimental method of the absorption spectra and photoluminescence. We found a better adjustment of the band gap energy according to nanosemiconductors size. These results may enhance considerably the efficiency of solar cells based on quantum dots by optimizing the nano-semiconductors size for each junction and converting the maximum of the solar spectrum. Indeed, we have found that the optimal quantum dot radii of all silicon tandem solar cells are 1.1nm for the upper junction and 1.5nm for the middle junction.

Keywords

Gap Energy, Hyperbolic Band Model, Luttinger Parameters, Mass Effective Approximation, Quantum Confinement Modeling.
Subscription Login to verify subscription
User
Notifications
Font Size


  • H. Mammar, A. Benmansour and M. Bouzaki, IEEE Xplore, NAWDMPV14, 1-7 (2014).
  • C.-W. Jiang and A. Martin, J. Appl. Phys., 99, 114902 (2006).
  • J. P. Connolly, D. Mencaraglia, C. Renard and D. Bouchier, J. Prog. Photovoltaics Res. Appl., 22, 810 (2014).
  • M. A. Green, Springer Series in Photonics, 12 (2003).
  • F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, J. Sol. Energy Mater. Sol. Cells, 90, 2952 (2006).
  • E.-C. Cho, M. A. Green, G. Conibeer, D. Song and Y-H Cho, Adv. Opto. Electron., 11 (2007).
  • Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe and J.-F. Guillemoles, J. Appl. Phys. Rev., 2, 021302 (2015).
  • E. G. Ladopoulos, Int. J. renewable energy Res, 3, 270 (2013).
  • M. Melvin David Kumar and S. Devadason, J. Superlattices Microstruct., 58, 154 (2013).
  • U. S. Sonawane, E. P. Samuel, U. Zope and D. S. Patil, Optik Int. J. Light Electron Opt., 124, 802 (2013).
  • A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, J. Sol. Energy, 88, 137 (2013).
  • V. Arivazhagan, M. M. Parvathi, S. Rajesh, R.Sæterli and R. Holmestad, J. Sol. Energy, 106, 38 (2014).
  • L.E. Brus, J.Chem. Phys., 80, 4403 (1984).
  • E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, and L.V. Goncharova, J. Appl. Phys., 111, 034307 (2012).
  • L.Banyai and S.W.Koch, World Scientific Series on Atomic Molecular and Optical Physics, 2 (1993).
  • S.Adachi, “Properties of group IV, III-V and II-VI semiconductors”, Wiley Series in Materials for Electronic and Optoelectronic Applications, (2005).
  • C. R. Pidgeon and R. N. Brown, Phys. Rev., 146, 575 (1966).
  • S.Adachi, “II-VI compound semiconductors”, Handbook on Physical Properties of Semiconductors, 3 (2004).
  • S. A. Vanalakar, S. S. Mali, M. P. Suryavanshi and P. S. Patil, J. Nanomater. Biostruct., 5, 805 (2010).
  • M. A. Leontiadou, E. J. Tyrrell, C. T. Smith, D.EspinobarroVelazquez, R. Page, P.O’Brien, J.Miloszewski, T. Walsh, D.Binks, S.Tomić, J.Sol. Energy Mater. Sol. Cells, 159, 657 (2017).
  • N. McElroy, R.C. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P. O’Brien, D.J. Binks, J. Thin Solid Films, 560, 65(2014).

Abstract Views: 448

PDF Views: 7




  • Adjustment of the Band Gap Energy According to Sizes of some Cubic Nanosemiconductors of IV, III-V and II-VI Groups

Abstract Views: 448  |  PDF Views: 7

Authors

Hicham Mammar
The Research Unit of Materials and Renewable Energy, University of Abou Bekr Belkaid, Fg Pasteur B.P 119, Tlemcen, Algeria
Abdelhalim Benmansour
The Research Unit of Materials and Renewable Energy, University of Abou Bekr Belkaid, Fg Pasteur B.P 119, Tlemcen, Algeria
Fatima Kerroumi
Algerian Ministry of Foreign Affairs, 08 City Zohor, Remchi-Tlemcen, Algeria

Abstract


The present work focuses on the modeling of the quantum confinement for several cubic semiconductors of the IV, IV-IV, III-IV, II-VI groups. In this way, we improve the actual methods of the band gap energy adjustment as function of the nanosemiconductors sizes. First, we used the Effective Mass Approximation (EMA) to investigate several confinement regimes such as weak, medium and strong. Then to ensure a good adjustment of this band gap energy, we recalculated the holes and the electrons effective masses of the cubic semiconductors via the K-P theory, the Luttinger parameters, and various interpolations. The results are compared with two other methods: a theoretical model of the Hyperbolic Band (HBM) and experimental method of the absorption spectra and photoluminescence. We found a better adjustment of the band gap energy according to nanosemiconductors size. These results may enhance considerably the efficiency of solar cells based on quantum dots by optimizing the nano-semiconductors size for each junction and converting the maximum of the solar spectrum. Indeed, we have found that the optimal quantum dot radii of all silicon tandem solar cells are 1.1nm for the upper junction and 1.5nm for the middle junction.

Keywords


Gap Energy, Hyperbolic Band Model, Luttinger Parameters, Mass Effective Approximation, Quantum Confinement Modeling.

References





DOI: https://doi.org/10.18311/jsst%2F2018%2F16433