Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Hierarchical Self-Assembly in DNA Ionogel: Effect of γ-Radiation on Gel Properties


Affiliations
1 School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067, India
2 Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi - 110062, India
     

   Subscribe/Renew Journal


DNA ionogels prepared by adding 1-ethyl-3-methylimidazolium chloride on low energy gamma irradiated DNA solution samples reveal non-trivial self-assembly. Variations in secondary structure and low-frequency gel rigidity modulus G0 captured this unique hitherto unexplored features of these gels. Interestingly, at higher radiation dose (0 to 100 Gy) samples could partially lose their initial rigidity. Dynamic light scattering revels dose dependent relaxation dynamics corresponding to ergodicity breaking time. In particular, viscosity and rheology showed that the time of gelation tgel, temperature of gelation Tgel and strength of gelation G0 are gamma ray dose dependent. DNA Ionogel melting with temperature shows self-assembled characteristics of this biomaterial. Gelation kinetics of ionizing radiation treated DNA strands have been studied in literature.

Keywords

DNA Ionogel, Gelation, γ-Radiation, Ionizing Radiation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • S. V. Vlierberghe, P. Dubruel, E. Schacht, Biomacromolecules, 12, 1387 (2011). https://doi.org/10.1021/bm200083n. PMid:21388145.
  • U. M.Sh, J. B. Lee, N. Park, S. Y. Kwon, C.C. Umbach, D. Luo, Nature Materials, 5, 797 (2006). https://doi.org/10.1038/nmat1741. PMid:16998469.
  • J. Dupont, R. F. de Souza, P. A. Z. Suarez, Chem. Rev., 102, 3667 (2002). https://doi.org/10.1021/cr010338r. PMid:12371898.
  • J. L. Deau, L. Viau, A. Vioux, Chem. Soc. Rev., 40, 907 (2011). https://doi.org/10.1039/C0CS00059K. PMid:21180731.
  • G. M. Kendall, M. P. Little, R. Wakeford, K.J. Bunch, J.C.H. Miles, T.J. Vincent, J.R. Meara, M.F.G. Murphy, Leukemia, 27, 3 (2013). https://doi.org/10.1038/leu.2012.151. PMid:22766784 PMCid:PMC3998763.
  • M. S. Pearce, J. A. Salotti, M. P. Little, K. McHugh, C. Lee, K. P. Kim, N. L. Howe, C. M. Ronckers, P. Rajaraman, A. W. Sir Craft, L. Parker, A. B. de Gonzalez, Lancet, 380, 499 (2012). https://doi.org/10.1016/S0140-6736(12)60815-0.
  • R. Smith-Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De González, D. L. Miglioretti, Archives of internal medicine, 169, 2078 (2009). https://doi.org/10.1001/archinternmed.2009.427. PMid:20008690 PMCid:PMC4635397.
  • E. Picano, E. Vano, Cardiovascular Ultrasound. 9, 35 (2011). https://doi.org/10.1186/1476-7120-9-35. PMid:22104562 PMCid:PMC3256101.
  • M. Ravanat, M. Tavernaporro, H. Menoni, D. Angelov, Cancer Lett., 327, 5 (2012). https://doi.org/10.1016/j.can-let.2012.04.005. PMid:22542631.
  • L. Eccles, P. O’Neill, M. E. Lomax, Mutat. Res. 711, 134 (2011). https://doi.org/10.1016/j.mrfmmm.2010.11.003. PMid:21130102 PMCid:PMC3112496.
  • J. F. Ward, Prog. Nucleic. Acid. Res. Mol. Biol., 35, 95 (1988). https://doi.org/10.1016/S0079-6603(08)60611-X.
  • A. Asaithamby, D. J. Chen, Mutat. Res., 711, 87 (2011). https://doi.org/10.1016/j.mrfmmm.2010.11.002. PMid:21126526 PMCid:PMC3318975.
  • B. Stenerlöw, K. H. Karlsson, B. Cooper, B. Rydberg, Radiat. Res., 159, 502 (2003). https://doi.org/10.1667/0033-7587(2003)159[0502:MOPDDS]2.0.CO;2.
  • N. Orakdogen, B. Erman, O. Okay, Macromolecules, 43, 1530 (2010). https://doi.org/10.1021/ma902558f.
  • J. R. Milligan, J. Y. Ng, C. C. Wu, J. A. Aguilera, R. C. Fahey, J. F. Ward, Radiat. Res., 143, 273 (1995). https://doi.org/10.2307/3579213. PMid:7652164.
  • A. R. Peoples, K. R. Mercer, W. A. Bernhard, J. Phys. Chem. B., 114, 9283 (2010). https://doi.org/10.1021/jp103362z. PMid:20583765 PMCid:PMC2914509.
  • H. J. Kong, D. Kaigler, K. Kimand, D. J. Mooney, Biomacromolecules, 5, 1720 (2004). https://doi.org/10.1021/bm049879r. PMid:15360280.
  • X. Yang, Z. Zhu, Q. Liu, X. Chen, M. Ma, Radiation Physics and Chemistry, 77, 954 (2008). https://doi.org/10.1016/j.radphyschem.2008.02.011.
  • P. K. Pandey, K. Rawat, V. K. Aswal, J. Kohlbrecher, H. B. Bohidar, Phys. Chem. Chem. Phys., 19, 804 (2017). https://doi.org/10.1039/C6CP06229F. PMid:27929161.
  • K. Rawat, V. K. Aswal, H. B. Bohidar, J. Phys. Chem. B, 116, 14805 (2012). https://doi.org/10.1021/jp3102089. PMid:23194173.
  • J. D. Ferry, Viscoelastic Properties of Polymers. John Wiley & Sons (1980).
  • H. Barnes, A Handbook of Elementary Rheology. University of Wales Press, Wales (2000).
  • D.W. Gruenwedel, In: Encyclopedia of Food Sciences and Nutrition (Second Edition), (2003).
  • J. Sambrook, E. F. Fritsch, T. Maniatis, Molecular Cloning. Vol. 2. New York: Cold Spring Harbor Laboratory Press, (1989).
  • A. Aharony, D. Stauffer, Introduction to Percolation Theory. Taylor and Francis, London, (1994).
  • D. Stauffer, A. Coniglio, A. Adams, Adv. Polym. Sci., 44, 103 (1982).
  • L. de Arcangelis, E. Del Gado, A. Coniglio, Eur. Phys. J. E., 9, 277 (2002). https://doi.org/10.1140/epje/i2002-10078-0. PMid:15010920.
  • J. Sharma, H. B. Bohidar, Colloid and Polymer Science, 278, 15 (2000). https://doi.org/10.1007/s003960050003.
  • A. Ajji, L. Choplin, Macromolecules, 24, 5221 (1991). https://doi.org/10.1021/ma00018a031.
  • M. C. Moran, M. G. Miguel, B. Lindman, Langmuir, 23, 6478 (2007). https://doi.org/10.1021/la700672e. PMid:17488045.

Abstract Views: 235

PDF Views: 1




  • Hierarchical Self-Assembly in DNA Ionogel: Effect of γ-Radiation on Gel Properties

Abstract Views: 235  |  PDF Views: 1

Authors

Pankaj Kumar Pandey
School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067, India
Kamla Rawat
Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi - 110062, India
H. B. Bohidar
School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067, India

Abstract


DNA ionogels prepared by adding 1-ethyl-3-methylimidazolium chloride on low energy gamma irradiated DNA solution samples reveal non-trivial self-assembly. Variations in secondary structure and low-frequency gel rigidity modulus G0 captured this unique hitherto unexplored features of these gels. Interestingly, at higher radiation dose (0 to 100 Gy) samples could partially lose their initial rigidity. Dynamic light scattering revels dose dependent relaxation dynamics corresponding to ergodicity breaking time. In particular, viscosity and rheology showed that the time of gelation tgel, temperature of gelation Tgel and strength of gelation G0 are gamma ray dose dependent. DNA Ionogel melting with temperature shows self-assembled characteristics of this biomaterial. Gelation kinetics of ionizing radiation treated DNA strands have been studied in literature.

Keywords


DNA Ionogel, Gelation, γ-Radiation, Ionizing Radiation.

References