Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Dilution Driven Self-Assembly and Re-Entrant Phase Transition in Molecular Hydrogels


Affiliations
1 School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067, India
2 Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi - 110062, India
     

   Subscribe/Renew Journal


TX-100 molecular hydrogels exhibited re-entrant melt-gel-sol phase transition driven solely by dilution, which sequentially altered the self-assembly of the micellar formations and their population was investigated through the monitoring of the physical parameters namely, solution viscosity, particle size histogram, ergodicity, and gel rigidity modulus. This phenomenon was noticed at 20° C in the TX-100 concentration region of 0.2 to 1.2 M much above the critical micellar concentration of 0.22 mM. The particle size histograms revealed the presence of spherical micelles (size »3 nm) in the solution ([TX-100] < 0.5 M) which formed entangled wormlike cylindrical micelles (apparent hydrodynamic radius » 50 nm) when (0.5 M< [TX-100] < 0.9 M) giving rise to a gel-like structure. Further increase in the TX-100 concentration increased the propensity of these wormlike cylindrical micelles that got randomly distributed creating a dense melt phase. Interestingly, we observed transition solely driven by dilution which defined complete re-entrant behavior at room temperature. These molecular gels could be created by dilution of the melt or concentration of the sol unlike in the polymer gels. Remarkably, this hitherto little known unique phenomenon was exhibited by a simple system of non-ionic surfactant solution. Thus, we have a hydration reversible gel at our disposal which has a special place in soft matter arena.

Keywords

Bulk Phenomena, Gelation Mechanism, Re-Entrant Phase Transition, Surfactant Gels, TX-100 Gel.
Subscription Login to verify subscription
User
Notifications
Font Size


  • J.J. de Jong, B. L. Feringa, J. van Esch, Molecular Gels, Springer, Dordrecht, 895 (2006). https://doi.org/10.1007/1-4020-3689-2_27.
  • E. Krieg, E. Shirman, H. Weissman, E. Shimoni, S. G. Wolf, I. Pinkas, B. Rybtchinski, J. Am. Chem. Soc., 131, 14365 (2009). https://doi.org/10.1021/ja903938g. PMid:19807182.
  • R.C. Kramb, R. Zhang, K.S. Schweizer, C.F. Zukoski, J. Chem. Phys., 134, 014503 (2011). https://doi.org/10.1063/1.3509393. PMid:21219003.
  • M. Rubinstein, A.V. Dobrynin, Curr. Opin. Colloid Interface Sci., 4, 83 (1999). https://doi.org/10.1016/S1359-0294(99)00013-8.
  • S.K. Ghosh, V. Rathee, R. Krishnaswamy, V.A. Raghunathan, A.K. Sood, Langmuir, 25, 8497 (2009). https://doi.org/10.1021/la804330x. PMid:19301881.
  • R. Nagarajan, E. Ruckenstein, Langmuir, 7, 2934 (1991). https://doi.org/10.1021/la00060a012.
  • A.K. Atmuri, G.A. Peklaris, S. Kishore, S.R. Bhatia, Soft Matter, 8, 8965 (2012). https://doi.org/10.1039/c2sm25311a.
  • J. Lehn, Angew. Chem. Int. Ed. Engl., 27, 89 (1988). https://doi.org/10.1002/anie.198800891.
  • J. Lehn, Angew. Chem. Int. Ed. Engl., 29, 1304 (1990). https://doi.org/10.1002/anie.199013041.
  • G. Whitesides, J. Mathias, C. Seto, Science., 254, 1312 (1991). https://doi.org/10.1126/science.1962191. PMid:1962191.
  • H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem., Int. Ed. Engl., 27, 113 (1988). https://doi.org/10.1002/anie.198801131.
  • S.I. Stupp, S. Son, H.C. Lin, L. S. Li, Science, 259, 59 (1993). https://doi.org/10.1126/science.259.5091.59. PMid: 17757473.
  • T. Kato, Science, 295, 2414 (2002). https://doi.org/10.1126/science.1070967-a. PMid:11923528.
  • V. Percec, M. Glodde, T.K. Bera, Y. Miura, I. Shiyanovskaya, K.D. Singer, V.S.K. Balagurusamy, P.A. Heiney, I. Schnell, A. Rapp, H.W. Spiess, S.D. Hudson, H. Duan, Nature, 417, 384 (2002). https://doi.org/10.1038/nature01072. PMid:12352988.
  • N.M. Sangeetha, U. Maitra, Chem. Soc. Rev., 34, 821 (2005). https://doi.org/10.1039/b417081b. PMid:16172672.
  • A.R. Hirst, B. Escuder, J.F. Miravet, D.K. Smith, Angew. Chem., Int. Ed., 47, 8002 (2008). https://doi.org/10.1002/anie.200800022. PMid:18825737.
  • P. Xie, R. Zhang, J. Mater. Chem., 15, 2529 (2005). https://doi.org/10.1039/b413835j.
  • S. Maeda, Y. Hara, T. Sakai, R. Yoshida, S. Hashimoto, Adv. Mater., 19, 3480 (2007). https://doi.org/10.1002/adma.200700625.
  • H. Maeda, Chem. Eur. J., 14, 11274 (2008). https://doi.org/10.1002/chem.200801333. PMid:18823056.
  • G.R. Hendrickson, L.A. Lyon, Soft Matter, 5, 29 (2009). https://doi.org/10.1039/B811620B.
  • S.K. Ahn, R.M. Kasi, S.C. Kim, N. Sharma, Y.X. Zhou, Soft Matter, 4, 1151 (2008). https://doi.org/10.1039/b801515e, https://doi.org/10.1039/b714376a. PMid:32907254
  • T. Ishi-i, S Shinkai, Top. Curr. Chem., 258, 119 (2005).
  • A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Science, 315, 487 (2007). https://doi.org/10.1126/sci-ence.1135516. PMid:17255505.
  • R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature, 374, 240 (1995). https://doi.org/10.1038/374240a0.
  • S. Kiyonaka, K. Sugiyasu, S. Shinkai, I. Hamachi, J. Am. Chem. Soc., 124, 10954 (2002). https://doi.org/10.1021/ja027277e. PMid:12224923.
  • S.I. Kawano, N. Fujita, S. Shinkai, J. Am. Chem. Soc., 126, 8592 (2004). https://doi.org/10.1021/ja048943+. PMid:15250678.
  • J. Chen, A.J. McNeil, J. Am. Chem. Soc., 130, 16496 (2008). https://doi.org/10.1021/ja807651a. PMid:19049448.
  • I. Tomatsu, A. Hashidzume, A. Harada, Macromol. Rapid Commun., 27, 238 (2006). https://doi.org/10.1002/marc.200500793.
  • C. Wang, D. Zhang, D. Zhu, J. Am. Chem. Soc., 127, 16372 (2005). https://doi.org/10.1021/ja055800u. PMid:16305205.
  • W. Deng, H. Yamaguchi, Y. Takashima, A. Harada, Angew. Chem., Int. Ed., 46, 5144 (2007). https://doi.org/10.1002/anie.200701272. PMid:17526038.
  • H.J. Kim, J.H. Lee, M.Lee, Angew. Chem., Int. Ed. 44, 5810 (2005). https://doi.org/10.1002/anie.200501270. PMid:16130165.
  • N. Mizoshita, Y. Suzuki, K. Kishimoto, K. Hanabusa, T. Kato, J. Mater. Chem., 12, 2197 (2002). https://doi.org/10.1039/B201484J.
  • A. Guerzo, J.L. Pozzo, Photoresponsive Gels. In: Molecular Gels: Materials with Self-Assembled Fibrillar Networks, R. G. Weiss, P. Terech, Eds., Springer: Dordrecht; 817 (2006). https://doi.org/10.1007/1-4020-3689-2_25.
  • S. Matsumoto, S. Yamaguchi, S. Ueno, H. Komatsu, M. Ikeda, K. Ishizuka, Y. Iko, K.V. Tabata, H. Aoki, S. Ito, H. Noji, I. Hamachi, Chem. Eur. J., 14, 3977 (2008). https://doi.org/10.1002/chem.200701904. PMid:18335444.
  • F. Peng, G. Li, X. Liu, S. Wu, Z. Tong, J. Am. Chem. Soc., 130, 16166 (2008). https://doi.org/10.1021/ja807087z. PMid:18998675.
  • K. Sumaru, K. Ohi, T. Takagi, T. Kanamori, T. Shinbo, Langmuir, 22, 4353 (2006). https://doi.org/10.1021/la052899+. PMid:16618186.
  • M. Akazawa, K. Uchida, J.J. D. de Jong, J. Areephong, M. Stuart, G. Caroli, W.R. Browneb, B.L. Feringa, Org. Biomol. Chem., 6, 1544 (2008). https://doi.org/10.1039/b802580k. PMid:18421384.
  • T. Naota, H. Koori, J. Am. Chem. Soc., 127, 9324 (2005). https://doi.org/10.1021/ja050809h. PMid:15984832.
  • W. Weng, J.B. Beck, A.M. Jamieson, S.J. Rowan, J. Am. Chem. Soc., 128, 11663 (2006). https://doi.org/10.1021/ja063408q. PMid:16939292.
  • J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu, Y. Fang, Adv. Mater., 20, 2508 (2008). https://doi.org/10.1002/adma.200703195.
  • H. Komatsu, S. Matsumoto, S.I. Tamaru, K. Kaneko, M. Ikeda, I. Hamachi, J. Am. Chem. Soc., 131, 5580 (2009). https://doi.org/10.1021/ja8098239. PMid:19331364.
  • R. Yerushalmi, A. Scherz, M.E. van der Boom, H-B Kraatz, J. Mater. Chem., 15, 4480 (2005). https://doi.org/10.1039/b505212b.
  • M. Yoshida, J. Lahann, Smart Nanomaterials. ACS Nano, 2, 1101 (2008). https://doi.org/ 10.1021/nn800332g. P Mid:19206325.
  • A.P.H.J. Schenning, E.W. Meijer, Chem. Commun., 3245 (2005). https://doi.org/10.1039/b501804h. PMid:15983639.
  • `L. Zang, Y. Che, J.S. Moore, Acc. Chem. Res., 41, 1596 (2008). https://doi.org/10.1021/ar800030w. PMid:18616298.
  • L.A. Estroff, A.D. Hamilton, Chem. Rev., 104, 1201 (2004). https://doi.org/10.1021/cr0302049. PMid:15008620,
  • S. Hecht, Mater. Today, 48 (2005). https://doi.org/10.1016/S1369-7021(05)00747-9.
  • J.A.A.W. Elemans, A.E. Rowan, R.J.M. Nolte, J. Mater. Chem., 13, 2661 (2003). https://doi.org/10.1039/B304972H.
  • R. Ranjan, K. Rawat, H.B. Bohidar, Colloids Surf. A Physicochem. Eng. Asp., 499, 113 (2016). https://doi.org/10.1016/j.colsurfa.2016.04.004.
  • R.J. Robson, E.A. Dennis, J. Phys. Chem., 81, 1075 (1977). https://doi.org/10.1021/j100526a010.
  • G.E. Tiller, et al., Anal. Biochem., 141, 262 (1984). https://doi.org/10.1016/0003-2697(84)90455-X.
  • B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics; John-Wiley, New York; (1976)

Abstract Views: 226

PDF Views: 1




  • Dilution Driven Self-Assembly and Re-Entrant Phase Transition in Molecular Hydrogels

Abstract Views: 226  |  PDF Views: 1

Authors

Rahul Ranjan
School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067, India
Kamla Rawat
Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi - 110062, India
H. B. Bohidar
School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110067, India

Abstract


TX-100 molecular hydrogels exhibited re-entrant melt-gel-sol phase transition driven solely by dilution, which sequentially altered the self-assembly of the micellar formations and their population was investigated through the monitoring of the physical parameters namely, solution viscosity, particle size histogram, ergodicity, and gel rigidity modulus. This phenomenon was noticed at 20° C in the TX-100 concentration region of 0.2 to 1.2 M much above the critical micellar concentration of 0.22 mM. The particle size histograms revealed the presence of spherical micelles (size »3 nm) in the solution ([TX-100] < 0.5 M) which formed entangled wormlike cylindrical micelles (apparent hydrodynamic radius » 50 nm) when (0.5 M< [TX-100] < 0.9 M) giving rise to a gel-like structure. Further increase in the TX-100 concentration increased the propensity of these wormlike cylindrical micelles that got randomly distributed creating a dense melt phase. Interestingly, we observed transition solely driven by dilution which defined complete re-entrant behavior at room temperature. These molecular gels could be created by dilution of the melt or concentration of the sol unlike in the polymer gels. Remarkably, this hitherto little known unique phenomenon was exhibited by a simple system of non-ionic surfactant solution. Thus, we have a hydration reversible gel at our disposal which has a special place in soft matter arena.

Keywords


Bulk Phenomena, Gelation Mechanism, Re-Entrant Phase Transition, Surfactant Gels, TX-100 Gel.

References