Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Review: Effects of Electrophoretic Deposition Parameters on Hydroxyapatite Reinforced Composite Coatings


Affiliations
1 Department of Mechanical Engineering, Punjabi University Patiala, Punjab, India
2 Department of Mechanical Engineering, BBSBEC Fatehgarh Sahib, Punjab, India
     

   Subscribe/Renew Journal


To increase the bone bioactivity of the metallic implants, ceramic oxide reinforced coatings are often deposited on implant surfaces. Various ceramic oxides such as hydroxyapatite, bioactive glass, titanium oxide, aluminium oxide, iron oxide and zirconium oxide are used for producing a real bond with the surrounding bone tissues. Among these bioactive materials, hydroxyapatite (HAp) has proved to be a promising candidate of highly reactive material. It helps to increase the bioactivity of the implant surface and possesses similar chemical, structural and biological properties to that of human bone. It will reduce metallic ion release and promoting bone-bonding ability. This review encompasses the effects of electrophoretic deposition (EPD) parameters including voltage, deposition time, dispersion medium, particles concentration, post EPD treatments and gap between electrodes on the performance of HAp reinforced composite coatings. The parameters are discussed based on the up-to-date comprehensive overview of the current research progress in the field of EPD coated HAp composite coatings for biomedical applications.

Keywords

Electrophoretic Deposition, Hydroxyapatite Coating, Metallic Substrates.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Balla, V. K., Bodhak, S., Bose, S., & Bandyopadhyay, A. (2010). Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 6(8), 3349–3359. https://doi.org/10.1016/j.actbio.2010.01.046
  • Ryan, G., Pandit, A., & Apatsidis, D. P. (2006, May). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. https://doi.org/10.1016/j.biomaterials.2005.12.002
  • Manivasagam, G., Kamachi Mudali, U., Rajb, B., & Asokamani, R. (2003). Corrosion and Microstructural Aspects of Titanium and its Alloys as Orthopaedic Devices. Corrosion Reviews, 21(2–3), 125–160. https://doi.org/10.1515/CORRREV.2003.21.2-3.125
  • Sridhar, T. M., Eliaz, N., Kamachi Mudali, U., & Raj, B. (2002). Electrophoretic Deposition of Hydroxyapatite Coatings and Corrosion Aspects of Metallic Implants. Corrosion Reviews, 20(4), 255–294. https://doi.org/10.1515/CORRREV.2002.20.4-5.255
  • Stoch, A., Brozek, A., Kmita, G., Stoch, J., Jastrz, W., & Rakowska, A. (2001). Electrophoretic coating of hydroxyapatite on titanium implants.In Journal of Molecular Structure (Vol. 596, pp. 191–200). https://doi.org/10.1016/S00222860(01)00716-5.
  • Hench, L. L. (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7), 1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  • Liu, X., Tao, S., & Ding, C. (2002). Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials, 23(3), 963–968. https://doi.org/10.1016/S0142-9612(01)00210-1
  • Singh, I., Kaya, Cengiz., Shaffer, M., Thomas, B., & Boccaccini, Aldo. (2006). Bioactive Ceramic Coatings Containing Carbon Nanotubos on Metallic Substrates by Electrophoretic Deposition. Journal of Materials Science, 41.8144-8151. 10.1007/s10853-006-0170-0.
  • Wu, C., Ramaswamy, Y., Gale, D., Yang, W., Xiao, K., Zhang, L., Yin, Y., & Zreiqat, H. (2008). Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. Acta biomaterialia, 4(3), 569–576. https://doi.org/10.1016/j.actbio.2007.11.005
  • Zhang, W., Chen, X., Liao, X., Huang, Z., Dan, X., & Yin, G. (2011). Electrophoretic deposition of porous CaO-MgO-SiO2 glass-ceramic coatings with B2O3 as additive on Ti-6Al-4V alloy. Journal of materials science. Materials in medicine, 22(10), 2261–2271. https://doi.org/10.1007/s10856-011-4418-0
  • Arias, L.E.C. (2015). Electrophoretic deposition of organic/inorganic composite coatings on metallicsubstrates for bone replacement applications: mechanisms and development of new bioactive materials based onpolysaccharides[ Ph.D. Thesis].p.1-260.
  • Boccaccini, A. R., Keim, S., Ma, R., Li, Y., & Zhitomirsky, I. (2010). Electrophoretic deposition of biomaterials. Journal of the Royal Society, Interface, 7 Suppl 5(Suppl 5), S581–S613. https://doi.org/10.1098/rsif.2010.0156.focus
  • Zhitomirsky I. (2002). Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Advances in colloid and interface science, 97(1-3), 279–317. https://doi.org/10.1016/s0001-8686(01)00068-9
  • Zheng, X., Huang, M., & Ding, C. (2000). Bond strength of plasma-sprayed hydroxyapatite/ Ti composite coatings. Biomaterials, 21(8), 841–849. https://doi.org/10.1016/s01429612(99)00255-0
  • Zhitomirsky, D., Roether, J. A., Boccaccini, A. R., & Zhitomirsky, I. (2009). Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. Journal of Materials Processing Technology, 209(4), 1853–1860. https://doi.org/10.1016/j.jmatprotec.2008.04.034.
  • Kwok, C. T., Wong, P. K., Cheng, F. T., & Man, H. C. (2009). Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied Surface Science, 255 (13–14), 6736–6744. https://doi.org/10.1016/j.apsusc.2009.02.086
  • Mohan, L., Durgalakshmi, D., Geetha, M., Sankara Narayanan, T. S. N., & Asokamani, R. (2012). Electrophoretic deposition of nanocomposite (HAp + TiO 2) on titanium alloy for biomedical applications. Ceramics International, 38(4), 3435–3443. https://doi.org/10.1016/j.ceramint.2011.12.056
  • Maleki-Ghaleh, H., Khalili, V., Khalil-Allafi, J., & Javidi, M. (2012). Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process. Surface and Coatings Technology, 208, 57–63. https://doi.org/10.1016/j.surfcoat.2012.08.001
  • Huang, Y., Ding, Q., Han, S., Yan, Y., & Pang, X. (2013). Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. Journal of materials science.Materials in medicine, 24(8), 1853–1864. https://doi.org/10.1007/s10856-013-4955-9
  • Li, M., Liu, Q., Jia, Z., Xu, X., Cheng, Y., Zheng, Y., … Wei, S. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 67, 185–197. https://doi.org/10.1016/j.carbon.2013.09.080.
  • Tahmasbi Rad, A., Solati-Hashjin, M., Osman, N. A. A., & Faghihi, S. (2014). Improved biophysical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceramics International, 40(8 PART B), 12681– 1 2 6 9 1 . https://doi.org/10.1016/jceramint.2014.04.116
  • Mehboob, H., Awais, M., Khalid, H., Siddiqi, S.A., & Rehman, I. (2014). Polymer-assisted deposition of hydroxyapatite coatings using the electrophoretic technique. Biomedical Engineering: Applications, Basis and Communications. 26(6),1450073.
  • Molaei, A., Yari, M., & Afshar, M. R. (2015). Modification of electrophoretic deposition of chitosan–bioactive glass–hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceramics International, 41(10), 14537–14544. https://doi.org/10.1016/j.ceramint.2015.07.170
  • Farnoush, H., Muhaffel, F., & Cimenoglu, H. (2015). Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing microarc oxidized CP-Ti substrates. Applied Surface Science, 324, 765–774. https://doi.org/10.1016/j.apsusc.2014.11.032
  • Drevet, R., Ben Jaber, N., Fauré, J., Tara, A., Ben Cheikh Larbi, A., & Benhayoune, H. (2016). Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surface and Coatings Technology, 301, 94–99. https://doi.org/10.1016/j.surfcoat.2015.12.058
  • Bakin, B., Koc Delice, T., Tiric, U., Birlik, I., & Ak Azem, F. (2016). Bioactivity and corrosion properties of magnesiumsubstituted CaP coatings produced via electrochemical deposition. Surface and Coatings Technology, 301, 29–35. https://doi.org/10.1016/j.surfcoat.2015.12.078
  • Molaei, A., Yari, M. and Afshar, M.R. (2017). Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films in surface engineering, Applied Clay Science. 135, 75-81.
  • Manoj Kumar, R., Kuntal, K. K., Singh, S., Gupta, P., Bhushan, B., Gopinath, P., & Lahiri, D. (2016). Electrophoretic deposition of hydroxyapatite coating on Mg-3Zn alloy for orthopaedic application. Surface and Coatings Technology, 287, 82–92. https://doi.org/10.1016/j.surfcoat.2015.12.086
  • Sankar, M., Suwas, S., Balasubramanian, S., & Manivasagam, G. (2017). Comparison of electrochemical behavior of hydroxyapatite coated onto WE43 Mg alloy by electrophoretic and pulsed laser deposition. Surface and Coatings Technology, 309, 840–848. https://doi.org/10.1016/j.surfcoat.2016.10.077
  • Huang, W., Xu, B., Yang, W., Zhang, K., Chen, Y., Yin, X., … Pei, F. (2017). Corrosion behavior and biocompatibility of hydroxyapatite/ magnesium phosphate/zinc phosphate composite coating deposited on AZ31 alloy. Surface and Coatings Technology, 326, 270–280.https://doi.org/10.1016/j. surfcoat.2017.07.066
  • Jugowiec, D., Łukaszczyk, A., Cieniek, Ł., Kowalski, K., Rumian, Ł., Pietryga, K., … Moskalewicz, T. (2017). Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy. Surface and Coatings Technology, 324, 64–79. https://doi.org/10.1016/j.surfcoat.2017.05.056
  • Zhong, Z., & Ma, J. (2017). Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications. Journal of Biomaterials Applications, 32(3), 399–409. https://doi.org/10.1177/0885328217723501
  • Tozar, A., & Karahan, İ. H. (2018). A comparative study on the effect of collagen and h-BN reinforcement of hydroxyapatite/ chitosan biocomposite coatings electrophoretically deposited on Ti-6Al-4V biomedical implants. Surface and Coatings Technology, 340, 167–176. https://doi.org/10.1016/j.surfcoat.2018.02.034
  • Heavens, S. N. (1990). Electrophoretic deposition as a processing route for ceramics. Noyes Publications, Advanced Ceramic Processing and Technology. 1, 255-283.
  • Ferrari, B. and Moreno, R. (1997). Electrophoretic deposition of aqueous alumina slips. Journal of the European Ceramic Society . 17(4), 549-556.
  • Ferrari, B., & Moreno, R. (1996). The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Materials Letters, 28(4–6), 353–355. https://doi.org/10.1016/0167-577X(96)00075-4
  • Zarbov, M., Schuster, I., & Gal-Or, L. (2004). Methodology for selection of charging agents for electrophoretic deposition of ceramic particles. Journal of Materials Science, 39(3), 813-817.
  • Ervina, J., Ghaleb, Z. A., Hamdan, S., & Mariatti, M. (2019). Colloidal stability of water-based carbon nanotube suspensions in electrophoretic deposition process: Effect of applied voltage and deposition time. Composites Part A: Applied Science and Manufacturing, 117, 1–10. https://doi.org/10.1016/j.compositesa.2018.11.002
  • Brown, D.R. and Salt, F.W. (1965), The mechanism of electrophoretic deposition. Journal of Applied. Chemistry. 15, 40-48. doi:10.1002/jctb.5010150505
  • Mori, T., Nagashima, H., Ito, Y., Era, Y., & Tsubaki, J. I. (2019). Agglomeration of fine particles in water upon application of DC electric field. Minerals Engineering, 133,119–126. https://doi.org/10.1016/j.mineng.2019.01.017
  • Hasegawa, K., Kunugi, S., Tatsumisago, M. & Minami, T. (1999). Preparation of thick films by electrophoretic deposition using surface-modified silica particles derived from sol-gel method. Journal of Sol-Gel Science & Technology. 15(3), 243-249.
  • Zhitomirsky, I. & Gal-Or, L. (1997). Electrophoretic deposition of hydroxyapatite. Journal of Materials Science: Materials in Medicine. 8(4), 213-219.
  • Basu, R.N., Randall, C.A. and Mayo, M.J. (2001), Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition. Journal of the American Ceramic Society. 84, 33-40. doi:10.1111/j.1151-2916.2001.tb00604.x
  • Sansone, L., Malachovska, V., La Manna, P., Musto, P., Borriello, A., De Luca, G., & Giordano, M. (2014). Nanochemical fabrication of a graphene oxide-based nanohybrid for labelfree optical sensing with fiber optics. Sensors and Actuators, B: Chemical, 202, 523–526. https://doi.org/10.1016/j.snb.2014.05.067
  • Lee, V., Whittaker, L., Jaye, C., Baroudi, K.M., Fischer, D.A. and Banerjee, S. (2009). Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chemistry of Material. 21(16), 3905-3916.
  • Tabesh, E., Salimijazi, H. R., Kharaziha, M., Mahmoudi, M., & Hejazi, M. (2019). Development of an in-situ chitosancopper nanoparticle coating by electrophoretic deposition. Surface and Coatings Technology, 364. 239–247. https://doi.org/10.1016/j.surfcoat.2019.02.040
  • Su, Y., & Zhitomirsky, I. (2013). Electrophoretic deposition of graphene, carbon nanotubes and composite films using methyl violet dye as a dispersing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 97–103. https://doi.org/10.1016/j.colsurfa.2013.06.024
  • Koh, A.T., Chen, T., Pan, L., Sun, Z. & Chua, D.H. (2013). Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition. Journal of Applied Physics.113 (17), 174909.
  • Du, J., Zhang, Y., Deng, S., Xu, N., Xiao, Z., Shi, J., Wu, Z. and Cheng, H. (2013). Correlation between topographic structures and local field emission characteristics of graphenesheet films. Carbon. 61, 507-514.
  • Karimi, N., Kharaziha, M. & Raeissi, K. (2019). Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. Materials Science and Engineering: C. 98, 140-152.
  • Liu, Y., Zhang, D., Pang, S., Liu, Y. and Shang, Y., Size separation of graphene oxideusing preparative free‐flow electrophoresis. Journal of separation science, 2015. 38(1): p.157-163.
  • Diba, M., Garcia-Gallastegui, A., Taylor, R.N.K., Pishbin, F., Ryan, M.P., Shaffer, M.S. & Boccaccini, A.R. (2014). Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide. Carbon. 67, 656-661.
  • He, W., Zhu, L., Chen, H., Nan, H., Li, W., Liu, H. & Wang, Y. (2013). Electrophoretic deposition of graphene oxide as a corrosion inhibitor for sintered NdFeB. Applied Surface Science.279, 416-423.
  • Subramanian, P., Niedziolka-Jonsson, J., Lesniewski, A., Wang, Q., Li, M., Boukherroub, R. & Szunerits, S. (2014). Preparation of reduced graphene oxide–Ni (OH) 2 composites by electrophoretic deposition: application for non-enzymatic glucose sensing. Journal of Materials Chemistry: A. 2(15), 5525-5533.
  • Wu, M.S., Lin, Y.P., Lin, C.H. & Lee, J.T. (2012). Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors. Journal of Materials Chemistry. 22(6), 2442-2448.
  • Drevet, R., Fauré, J. & Benhayoune, H. (2012). Thermal treatment optimization of electrodeposited hydroxyapatite coatings on Ti6Al4V substrate. Advanced Engineering Materials. 14(6), 377-382.
  • Dash, M., Chiellini, F., Ottenbrite, R.M. & Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science. 36(8), 981-1014.
  • Sarkar, P. & Nicholson, P.S., Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society. 79(8), 1987-2002.
  • Aziz, A., Binti, S.A., Amirnordin, S.H., Hamimah, A., Abdullah, H.Z. & Taib, H. (2012). Short Review: Electrophoretic Deposition (EPD) on Non-Conductive Substrate. In Advanced Materials Research, 488, 1358-136.

Abstract Views: 302

PDF Views: 0




  • A Review: Effects of Electrophoretic Deposition Parameters on Hydroxyapatite Reinforced Composite Coatings

Abstract Views: 302  |  PDF Views: 0

Authors

Sandeep Singh
Department of Mechanical Engineering, Punjabi University Patiala, Punjab, India
Gurpreet Singh
Department of Mechanical Engineering, Punjabi University Patiala, Punjab, India
Niraj Bala
Department of Mechanical Engineering, BBSBEC Fatehgarh Sahib, Punjab, India

Abstract


To increase the bone bioactivity of the metallic implants, ceramic oxide reinforced coatings are often deposited on implant surfaces. Various ceramic oxides such as hydroxyapatite, bioactive glass, titanium oxide, aluminium oxide, iron oxide and zirconium oxide are used for producing a real bond with the surrounding bone tissues. Among these bioactive materials, hydroxyapatite (HAp) has proved to be a promising candidate of highly reactive material. It helps to increase the bioactivity of the implant surface and possesses similar chemical, structural and biological properties to that of human bone. It will reduce metallic ion release and promoting bone-bonding ability. This review encompasses the effects of electrophoretic deposition (EPD) parameters including voltage, deposition time, dispersion medium, particles concentration, post EPD treatments and gap between electrodes on the performance of HAp reinforced composite coatings. The parameters are discussed based on the up-to-date comprehensive overview of the current research progress in the field of EPD coated HAp composite coatings for biomedical applications.

Keywords


Electrophoretic Deposition, Hydroxyapatite Coating, Metallic Substrates.

References