Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Review on Surface Modification of Microelectrode Array for Extracellular Recording of the Neural Interface System


Affiliations
1 Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
     

   Subscribe/Renew Journal


Globally neurological diseases are increasing due to unhealthy lifestyles, environmental influences, and physical injuries. So, MEA (microelectrode array) based neural interface systems can restore the lost neural functions to treat neurological diseases through stimulating or recording a neuronal signal. In 1664 Jan Swammerdam was the first to explain nerve function and nerve stimulation. Nowadays, many neural recording systems are available for interfacing with the brain. These systems can be classified into two ways: intracellular or extracellular recording. The extracellular recording is the technique of recording or stimulating the neural signals by placing the electrode near the tissues or cells. It is a less invasive approach compared to an intracellular recording. Generally, the neural interface systems are classified as the CNS (central nervous system) and PNS (peripheral nervous system). Microelectrode arrays can interface in the central nervous system to treat neurological diseases. A mechanical mismatch is a significant problem that arises during the insertion of the implant into the brain tissue. So, various surface modification techniques are considered a viable solution among researchers to address this issue. Also, laser and EDM-based new fabrication techniques are getting more attention over photolithography techniques for reducing the fabrication timing, cost, and usage of hazardous chemicals.

Keywords

Microelectrode Array, Neural Interface Systems, Laser and EDM Fabrication Techniques, Surface Modification.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Abidian, M. R., & Martin, D. C. (2008). Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials, 29(9), 1273–1283. https://doi.org/10.1016/j.biomaterials.2007.11.022
  • Bamberg, E., & Rakwal, D. (2008). Experimental investigation of wire electrical discharge machining of gallium-doped germanium. Journal of Materials Processing Technology, 197(1–3), 419–427. https://doi.org/10.1016/j.jmatprotec.2007.06.038
  • Bao, M., & Wang, W. (1996). Future of microelectromechanical systems (MEMS). Sensors and Actuators, A: Physical, 56(1–2). https://doi.org/10.1016/0924-4247(96)01274-5
  • Berces, Z., Toth, K., Marton, G., Pál, I., KovátsMegyesi, B., Fekete, Z., Ulbert, I., & Pongrácz, A. (2016). Neurobiochemical changes in the vicinity of a nanostructured neural implant. Scientific Reports, 6. https://doi.org/10.1038/srep35944
  • Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407–420. https://doi.org/10.1038/nrn3241
  • Chaileshwar, R. D., Mamilla, R. S., & Magadum, S. (2020), A brief review on laser surface texturing of biomaterials for cell culture applications. Manufacturing Technology Today, 19(9), 8-12. http://www.ischolar.info/index.php/MTT/article/view/207948
  • Chapman, C. A. R., Chen, H., Stamou, M., Biener, J., Biener, M. M., Lein, P. J., & Seker, E. (2015). Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size. ACS Applied Materials and Interfaces, 7(13), 7093–7100. https://doi. org/10.1021/acsami.5b00410
  • Cheung, K. C., Renaud, P., Tanila, H., &Djupsund, K. (2007). Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8), 1783–1790. https://doi.org/10.1016/j.bios.2006.08.035
  • Dee, K. C., Puleo, D. A., & Bizios, R. (2003). An Introduction To Tissue-Biomaterial Interactions. An Introduction To TissueBiomaterial Interactions. https://doi.org/10.1002/0471270598
  • Du, Z. J., Kolarcik, C. L., Kozai, T. D. Y., Luebben, S. D., Sapp, S. A., Zheng, X. S., Nabity, J. A., & Cui, X. T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 53, 46–58. https://doi.org/10.1016/j.actbio.2017.02.010
  • Ereifej, E. S., Smith, C. S., Meade, S. M., Chen, K., Feng, H., & Capadona, J. R. (2018). The Neuroinflammatory Response to Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Advanced Functional Materials, 28(12). https://doi.org/10.1002adfm.201704420
  • Fattahi, P., Yang, G., Kim, G., & Abidian, M. R. (2014). A review of organic and inorganic biomaterials for neural interfaces. Advanced Materials, 26(12), 1846-1885. Wiley-VCH Verlag. https://doi.org/10.1002/adma.201304496
  • Ferguson, M., Sharma, D., Ross, D., & Zhao, F. (2019). A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Advanced Healthcare Materials, 8(19). Wiley-VCH Verlag. https://doi.org/10.1002/adhm.201900558
  • Fiáth, R., Hofer, K. T., Csikós, V., Horváth, D., Nánási, T., Tóth, K., Pothof, F., Böhler, C., Asplund, M., Ruther, P., & Ulbert, I. (2018). Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomedizinische Technik, 63(3), 301–315. https://doi.org/10.1515/bmt-2017-0154
  • Frazier, A. B. (1995). Recent applications of polyimide to micromachining technology. IEEE transactions on industrial electronics, 42(5), 442 - 448
  • Ghane-Motlagh, B., & Sawan, M. (2013). A review of Microelectrode Array technologies: Design and implementation challenges. 2013 2nd International Conference on Advances in Biomedical Engineering, ICABME 2013, 38–41. https://doi.org/10.1109/ICABME.2013.6648841
  • Gorham, W. F. (1966). A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry, 4(12). https://doi.org/10.1002/pol.1966.150041209
  • Gower, M. C. (2001). Laser micromachining for manufacturing MEMS devices. MEMS Components and Applications for Industry, Automobiles, Aerospace, and Communication, 4559. https://doi.org/10.1117/12.443040
  • Green, R. A., Ordonez, J. S., Schuettler, M., Poole-Warren, L. A., Lovell, N. H., & Suaning, G. J. (2010). Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials, 31(5), 886–893. https://doi.org/10.1016/j.biomaterials.2009.09.099
  • Hamel, E. J. O., Grewe, B. F., Parker, J. G., & Schnitzer, M. J. (2015). Cellular level brain imaging in behaving mammals: An engineering approach. In Neuron, 86(1), 140-159. Cell Press. https://doi.org/10.1016/j.neuron.2015.03.055
  • Hassler, C., Boretius, T., & Stieglitz, T. (2011). Polymers for neural implants. Journal of Polymer Science, Part B: Polymer Physics, 49 (1), 18–33. https://doi.org/10.1002/polb.22169
  • Hayden, C. J., & Dalton, C. (2010). Direct patterning of microelectrode arrays using femtosecond laser micromachining. Applied Surface Science, 256(12), 3761–3766. https://doi.org/10.1016/j.apsusc.2010.01.022
  • Holmes, A. S. (2001). Laser fabrication and assembly processes for MEMS. Laser Applications in Microelectronic and Optoelectronic Mnf VI, 4274. https://doi.org/10.1117/12.432522
  • Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E. A., Betancur, M., Stanley, G. B., Carin, L., & Bellamkonda, R. V. (2013). Relationship between intracortical electrode design and chronic recording function. Biomaterials, 34(33), 8061–8074. https://doi.org/10.1016/j.biomaterials.2013.07.016
  • Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F., & Gross, G. W. (2008). Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology, 3(7), 434–439. https://doi.org/10.1038/nnano.2008.174
  • Khorasani, M. T., &Mirzadeh, H. (2004). BHK cells behaviour on laser treated polydimethylsiloxane surface. Colloids and Surfaces B: Biointerfaces, 35(1), 67–71. https://doi.org/10.1016/j.colsurfb.2004.01.011
  • Kornblum, H. I., Araujo, D. M., Annala, A. J., Tatsukawa, K. J., Phelps, M. E., & Cherry, S. R. (2000). In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nature Biotechnology, 18(6), 655–660. https://doi.org/10.1038/76509
  • Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., & Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neuroscience, 6(1), 48–67. https://doi.org/10.1021/cn500256e
  • Lee, S. K., & Na, S. J. (1999). KrF excimer laser ablation of thin Cr film on glass substrate. Applied Physics A: Materials Science and Processing, 68(4), 417–423. https://doi.org/10.1007/s003390050916
  • Liu, Y., Zhang, X., & Hao, P. (2016). The effect of topography and wettability of biomaterials on platelet adhesion. Journal of Adhesion Science and Technology, 30(8), 878–893. https://doi.org/10.1080/01694243.2015.1129883
  • Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., Lin, S., Kazmi, S., Fowler, R. A., Holloway, S., Dunn, A. K., Chitwood, R. A., & Xie, C. (2017). Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science Advances, 3(2). https://doi.org/10.1126/sciadv.1601966
  • Neuron - Servier Medical Art. (n.d.). Retrieved December 9, 2021, from https://smart.servier.com/smart_image/neuron/
  • Nicholls, J. G., & Kuffler, S. W. (2012). From Neuron to brain. Neuroscience (Fifth edition.). Sinauer Associates Inc.
  • Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148(1), 1–18. https://doi.org/10.1016/j.jneumeth.2005.08.015
  • Qi, D., Liu, Z., Liu, Y., Jiang, Y., Leow, W. R., Pal, M., Pan, S., Yang, H., Wang, Y., Zhang, X., Yu, J., Li, B., Yu, Z., Wang, W., & Chen, X. (2017). Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Advanced Materials, 29(40). https://doi.org/10.1002/adma.201702800
  • Rakwal, D., Heamawatanachai, S., Tathireddy, P., Solzbacher, F., & Bamberg, E. (2009). Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsystem Technologies, 15(5), 789-797. https://doi.org/10.1007/s00542-009-0792-7
  • Rastogi, S. K., & Cohen-Karni, T. (2019). Nanoelectronics for neuroscience. Encyclopedia of Biomedical Engineering, (Vols. 1–3, pp. 631–649). https://doi.org/10.1016/B978-0-12-801238-3.99893-3
  • Reich, U., Mueller, P. P., Fadeeva, E., Chichkov, B. N., Stoever, T., Fabian, T., Lenarz, T., & Reuter, G. (2008). Differential fine-tuning of cochlear implant material-cell interactions by femtosecond laser microstructuring. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 87(1), 146–153. https://doi.org/10.1002/jbm.b.31084
  • Rodger, D. C., Fong, A. J., Li, W., Ameri, H., Ahuja, A. K., Gutierrez, C., Lavrov, I., Zhong, H., Menon, P. R., Meng, E., Burdick, J. W., Roy, R. R., Edgerton, V. R., Weiland, J. D., Humayun, M. S., & Tai, Y. C. (2008). Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators, B: Chemical, 132(2), 449–460. https://doi.org/10.1016/j.snb.2007.10.069
  • Rubehn, B., & Stieglitz, T. (2010). In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials, 31(13), 3449–3458. https://doi.org/10.1016/j.biomaterials.2010.01.053
  • Salari, A., & Dalton, C. (2020). Editorial on the special issue on microelectrode arrays and application to medical devices. Micromachines, 11(8). MDPI AG. https://doi.org/10.3390/MI11080776
  • Scanziani, M., & Häusser, M. (2009). Electrophysiology in the age of light. Nature, 461( 7266), 930-939. https://doi.org/10.1038/nature08540
  • Sohal, H. S., Clowry, G. J., Jackson, A., O’Neill, A., & Baker, S. N. (2016). Mechanical flexibility reduces the foreign body response to long-term implanted microelectrodes in rabbit cortex. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0165606
  • Song, X., Meeusen, W., Reynaerts, D., & van Brussel, H. (25 August 2000). Experimental Study of Micro-EDM Machining Performances on Silicon Wafer. Proc. SPIE 4174, Micromachining and microfabrication Process Technology VI. http://proceedings.spiedigitallibrary.org/
  • Spira, M. E., & Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology, 8(2), 83-94. Nature Publishing Group. https://doi.org/10.1038/nnano.2012.265
  • Stieglitz, T. (2016). Development of a polymer based neural probe.
  • Szostak, K. M., Grand, L., & Constandinou, T. G. (2017). Neural interfaces for intracortical recording: Requirements, fabrication methods, and characteristics. In Frontiers in Neuroscience (Vol. 11, Issue DEC). Frontiers Media S.A. https://doi.org/10.3389/fnins.2017.00665
  • Ward, M. P., Rajdev, P., Ellison, C., & Irazoqui, P. P. (2009). Toward a comparison of microelectrodes for acute and chronic recordings. Brain Research, 1282, 183–200. https://doi.org/10.1016/j.brainres.2009.05.052
  • Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.https://doi.org/10.1016/j.biomaterials.2008.04.023
  • Zhang, E. N., Clément, J. P., Alameri, A., Ng, A., Kennedy, T. E., & Juncker, D. (2021). Mechanically Matched Silicone Brain Implants Reduce Brain Foreign Body Response. Advanced Materials Technologies, 6(3). https://doi.org/10.1002/admt.202000909

Abstract Views: 105

PDF Views: 0




  • Review on Surface Modification of Microelectrode Array for Extracellular Recording of the Neural Interface System

Abstract Views: 105  |  PDF Views: 0

Authors

R. Vignesh
Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
Sunil Magadum
Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
K. Niranjan Reddy
Central Manufacturing Technology Institute, Bengaluru, Karnataka, India

Abstract


Globally neurological diseases are increasing due to unhealthy lifestyles, environmental influences, and physical injuries. So, MEA (microelectrode array) based neural interface systems can restore the lost neural functions to treat neurological diseases through stimulating or recording a neuronal signal. In 1664 Jan Swammerdam was the first to explain nerve function and nerve stimulation. Nowadays, many neural recording systems are available for interfacing with the brain. These systems can be classified into two ways: intracellular or extracellular recording. The extracellular recording is the technique of recording or stimulating the neural signals by placing the electrode near the tissues or cells. It is a less invasive approach compared to an intracellular recording. Generally, the neural interface systems are classified as the CNS (central nervous system) and PNS (peripheral nervous system). Microelectrode arrays can interface in the central nervous system to treat neurological diseases. A mechanical mismatch is a significant problem that arises during the insertion of the implant into the brain tissue. So, various surface modification techniques are considered a viable solution among researchers to address this issue. Also, laser and EDM-based new fabrication techniques are getting more attention over photolithography techniques for reducing the fabrication timing, cost, and usage of hazardous chemicals.

Keywords


Microelectrode Array, Neural Interface Systems, Laser and EDM Fabrication Techniques, Surface Modification.

References