Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Intelligent Prediction of Machine Tool Performance in Micro Turning Using Textured Inserts


Affiliations
1 Indian Institute of Technology Madras, Chennai, India., India
     

   Subscribe/Renew Journal


Intelligent machine tools can adapt to modifications in the machining environment while performing operations. An intelligent prediction of machine tool condition is an essential aspect in the manufacturing sector of Industry 4.0. Micro components of titanium alloys have huge applications in aerospace, optical and biomedical industries. In this study, machine learning (ML) based models are developed to forecast the performance of a micro-turning machine tool while working with plain and variously patterned textured micro inserts. The micro-turning experiments are performed on Ti6Al4V alloy and the cutting force, surface roughness and tool flank wear are measured for every machining pass. Supervised ML models are trained in order to predict the cutting force, flank wear and surface roughness with cutting parameters and the type of cutting inserts. In the comparison of developed ML models, Extreme Gradient Boost (XGBoost) performs best in prediction with the accuracy of 98.53% and runs in 40.67 milliseconds.

Keywords

Micro Turning, Micro Texturing, Machine Learning Models, Tool Wear, Surface Roughness.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Aghazadeh, F., Tahan, A., & Thomas, M. (2018). Tool condition monitoring using spectral subtraction algorithm and artificial intelligence methods in milling process. International Journal of Mechanical Engineering and Robotics Research, 7(1), 30-34.
  • Aslantas, K., & Çiçek, A. (2018). High speed turning of Ti6Al4V alloy in micro cutting conditions. Procedia CIRP, 77, 58-61.
  • Aslantas, K., Danish, M., Hasçelik, A., Mia, M., Gupta, M., Ginta, T., & Ijaz, H. (2020). investigations on surface roughness and toolwear characteristics in micro-turning of Ti-6Al-4V alloy. Materials, 13(13), 1-20.
  • Chakraborty, S., & Bhattacharya, S. (2021). Application of XGBoost Algorithm as a Predictive Tool in a CNC Turning Process. Reports in Mechanical Engineering, 2(2), 190-201.
  • Cheng, M., Jiao, L., Shi, X., Wang, X., Yan, P., & Li, Y. (2020). An intelligent prediction model of the tool wear based on machine learning in turning high strength steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234(13), 1580-1597.
  • Devaraj, S., Malkapuram, R., & Singaravel, B. (2021). Performance analysis of micro textured cutting insert design parameters on machining of Al-MMC in turning process. International Journal of Lightweight Materials and Manufacture, 4(2), 210-217.
  • Gouarir, A., Martínez-Arellano, G., Terrazas, G., Benardos, P., & Ratchev, S. (2018). In-process tool wear prediction system based on machine learning techniques and force analysis. Procedia CIRP, 77(Hpc), 501-504.
  • Hartung, P. D., Kramer, B. M., & von Turkovich, B. F. (1982). Tool Wear in Titanium Machining. CIRP Annals - Manufacturing Technology, 31(1), 75-80.
  • Jagadesh, T., & Samuel, G. L. (2014). Investigations into Cutting Forces and Surface Roughness in Micro Turning of Titanium Alloy Using Coated Carbide Tool. Procedia Materials Science, 5, 2450-2457.
  • Lin, Y., Wu, K., Shih, W., Hsu, P., & Hung, J. (2020). Prediction of surface roughness based on cutting parameters and machining vibration in end milling using regression method and artificial neural network. Applied Sciences, 10(11), 3941.
  • Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic development method for cyber-physical machine tools. Journal of Manufacturing Systems, 48, 13-24.
  • Pramanik, A. (2014). Problems and solutions in machining of titanium alloys. International Journal of Advanced Manufacturing Technology, 70(5-8), 919-928.
  • Rajesh Babu, T., & Samuel, G. L. (2022). Prediction of Machining Quality and Tool Wear in Micro-Turning Machine Using Machine Learning Models. Advances in Micro and Nano Manufacturing and Surface Engineering(1-12).
  • Ribeiro, F. S. F., Lopes, J. C., Bianchi, E. C., & de Angelo Sanchez, L. E. (2020). Applications of texturization techniques on cutting tools surfaces-a survey. The International Journal of Advanced Manufacturing Technology, 109(3-4), 1117-1135. https://doi.org/10.1007/s00170-020-05669-0
  • Silva, R., Dionisio, A., Leitao, P., & Barata, J. (2018). IDARTS - Towards intelligent data analysis and real-time supervision for. Computers in Industry, 101(October 2017), 138-146.
  • Vasumathy, D., & Meena, A. (2017). Influence of micro scale textured tools on tribological properties at tool-chip interface in turning AISI 316 austenitic stainless steel. Wear, 376-377, 1747-1758.
  • Wang, P., Gao, R. X., & Yan, R. (2017). A deep learning-based approach to material removal rate prediction in polishing. CIRP Annals - Manufacturing Technology, 66(1), 429-432.

Abstract Views: 118

PDF Views: 0




  • Intelligent Prediction of Machine Tool Performance in Micro Turning Using Textured Inserts

Abstract Views: 118  |  PDF Views: 0

Authors

Tere Rajesh Babu
Indian Institute of Technology Madras, Chennai, India., India
G. L. Samuel
Indian Institute of Technology Madras, Chennai, India., India

Abstract


Intelligent machine tools can adapt to modifications in the machining environment while performing operations. An intelligent prediction of machine tool condition is an essential aspect in the manufacturing sector of Industry 4.0. Micro components of titanium alloys have huge applications in aerospace, optical and biomedical industries. In this study, machine learning (ML) based models are developed to forecast the performance of a micro-turning machine tool while working with plain and variously patterned textured micro inserts. The micro-turning experiments are performed on Ti6Al4V alloy and the cutting force, surface roughness and tool flank wear are measured for every machining pass. Supervised ML models are trained in order to predict the cutting force, flank wear and surface roughness with cutting parameters and the type of cutting inserts. In the comparison of developed ML models, Extreme Gradient Boost (XGBoost) performs best in prediction with the accuracy of 98.53% and runs in 40.67 milliseconds.

Keywords


Micro Turning, Micro Texturing, Machine Learning Models, Tool Wear, Surface Roughness.

References