Open Access
Subscription Access
Open Access
Subscription Access
Design and analysis of micro thermal mass flow sensor using thin-filmbased thermocouples
Subscribe/Renew Journal
MEMS (Micro-electro mechanical system) based thermal flow sensors are getting more importance due to their ease of fabrication, small size, and high measurement resolution. In this proposed work, a Micro-Thermal flow sensor (TFS) based on MEMS technology is designed using thin film-based thermocouples. This work mainly focuses on materials selection, and identification of fabrication process followed by design, simulation and analysis of Micro-TFS. In this work, Thermopile temperature sensor is selected for Micro-TFS to overcome the drawbacks of other Temperature sensors. Aluminium and Phosphorus materials combination is selected for the Thermopile sensor, which generates a better See-beck coefficient and produces more output voltage. Fabrication process flow based on MEMS technology is identified for Micro-TFS. This proposed flow sensor is capable to measure up to 7 LPM, for a 6 mm diameter channel in Direct-flow mode and up to 110 LPM, for a 25 mm diameter channel in By-pass flow mode.
Keywords
Thermal Flow Sensor, Thermopile, See-Beck Effect, Calorimetric, MEMS.
User
Subscription
Login to verify subscription
Font Size
Information
- Ashauer, M., Glosch, H., Hedrich, F., Hey, N., Sandmaier, H., & Lang, W. (1998). Thermal Flow Sensor for Liquids and Gases. Micro-ElectroMechanical Systems (MEMS). https://doi.org/10.1115/imece1998-1280
- Balakrishnan, V., Phan, H.-P., Dinh, T., Dao, D., & Nguyen, N.-T. (2017). Thermal Flow Sensors for Harsh Environments. Sensors, 17(9), 2061.https://doi.org/10.3390/s17092061
- Billat, S., Kliche, K., Gronmaier, R., Nommensen, P., Auber, J., Hedrich, F., & Zengerle, R. (2007).
- Monolithic Integration of Micro-Channel on Disposable Flow Sensors for Medical Applications. TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference. https://doi. org/10.1109/sensor.2007.4300064
- Dou, Y. W., Qiu, C. J., Zang, B., Wang, J. X., & Zhang, X. D. (2015). Design and Simulation of Thermopile Sensor Technology Based on Porous Silicon. Applied Mechanics and Materials, 741, 289-293.
- https://doi.org/10.4028/www.scientific.net/ amm.741.289
- Flores, E., Ares, J. R., Castellanos-Gomez, A., Barawi, M., Ferrer, I. J., & Sánchez, C. (2015).
- Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 106(2), 022102. https:// doi.org/10.1063/1.4905636
- Hedrich, F., Kliche, K., Storz, M., Billat, S., Ashauer, M., & Zengerle, R. (2010). Thermal flow sensors for MEMS spirometric devices. Sensors and Actuators A: Physical, 162(2), 373-378. https:// doi.org/10.1016/j.sna.2010.03.019
- Innovative Sensor Technology IST AG ( n.a). SFS01 Silicon flow Sensors. https://www.ist-ag.com/ sites/default/files/downloads/sfs01.pdf
- Khan, M. S., Tariq, M. O., Nawaz, M., & Ahmed, J. (2021). MEMS Sensors for Diagnostics and Treatment in the Fight Against COVID-19 and Other Pandemics. IEEE Access, 9, 61123-61149. https://doi.org/10.1109/access.2021.3073958
- Kim, T. H., & Kim, S. J. (2006). Development of a micro-thermal flow sensor with thin-film thermocouples. Journal of Micromechanics and Microengineering, 16(11), 2502-2508. https:// doi.org/10.1088/0960-1317/16/11/035
- Kuo, J. T. W., Yu, L., & Meng, E. (2012). Micromachined Thermal Flow Sensors—A Review. Micromachines, 3(3), 550-573. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ mi3030550
- Mahvi, A. J., El Fil, B., & Garimella, S. (2019). Accurate and inexpensive thermal time-offlight sensor for measuring refrigerant flow in minichannels. International Journal of Heat and Mass Transfer, 132, 184-193. https://doi. org/10.1016/j.ijheatmasstransfer.2018.11.133
- Moisello, E., Malcovati, P., & Bonizzoni, E. (2021). Thermal Sensors for Contactless Temperature
- Measurements, Occupancy Detection, and Automatic Operation of Appliances during the COVID-19 Pandemic: A Review. Micromachines, 12(2), 148. https://doi.org/10.3390/mi12020148
- Zhang, S., & Liao, X. (2020). The thermoelectricphotoelectric integrated power generator and
- its design verification. Solid-State Electronics, 170, 107818. https://doi.org/10.1016/j.sse.
- 107818
Abstract Views: 121
PDF Views: 0